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SPIDER Cyber Range
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* Cyberranges are well defined controlled virtual environments used in cybersecurity
training as an efficient way for trainees to gain practical knowledge through hands on

activities.

* 5G infrastructure relies on the latest virtualization technologies, increasing the
exposition to cyber-security attack vectors.

* The vision of H2020 SPIDER project is to deliver a next-generation, extensive, and
replicable cyber range platform for the telecommunications domain.

— Training has become extremely important:

SPIDER does not restrict the target group to ethical hackers/experts, that aim to leverage their competences, but to an
increased audience covering risk assessors and non-expert users.

SPIDER aims to cover holistically the cyber security niche requirements of the 5G domain.




Why do we need ML in a Cyber Range

SPIDER

GGGGGGGGGGGG

. Machine Learning (ML) impacts in cybersecurity in 2 dimensions:

_ ML based tools :

— Anomaly detection
— ldentification of attacks (as spam, malware, phishing, ...)
— and others ...

_ ML based attacks™:

— Leverage ML to improve malicious activities
— Malware: obfuscate from antivirus, avoid spam filters, use cloud ML services ...
— Penetration test: password guessing, vulnerability scans, ...

— Use ML to deceive ML

— Manipulate data sources:
» Adversarial networks ( ML against ML -> Resilient ML)

*https://www.europol.europa.eu/publications-documents/malicious-uses-and-abuses-of-artificial-intelligence
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Security experts needs to learn how ML impact in their job

- Use ML based tools to detect and mitigate attacks:

— Understand the results of a ML tool:
— Confidence levels, False positive, True negatives, ...

— Parametrize ML tools (hyperparameters, confidence levels, ...)
— Compare different tools (ML or classical tools)
— Is not an infallible but supplementary tool

_ Learn to live with ML based attacks
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Ambition in SPIDER
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* Integrate ML tools in SPIDER Cyber range
— Infrastructure to train and test customized ML models

— Use cases: ML-based attack detectors integrated in toolboxes to be utilised in
Cyber-exercises

* Provide ML tools exercises:
— Define and create some ML related toolbox components
— Define and create some ML related attacks
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Traffic Generation with Mouseworld




ML and data Thirst
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e There is a serious lack of training datasets
— Data as an asset (SS)
— Privacy, regulatory concerns »
— Business interest

e There is a serious Lack of LABELLED data

— Needed for ML algorithms
e Supervised: training + validation
e Unsupervised: validation

What is the main bottleneck holding back further Al adoption? (select one)

Evaluation stage Mature practice

Company culture does not yet recognize needs for Al 10%

Lack of data or data quality issues _20% _26%

Lack of skilled people / difficulting hiring the required roles

Difficulties in identifying appropriate business use cases

Source: https://www.oreilly.com/data/free/ai-adoption-in-the-enterprise.csp




Mouseworld infrastructure (Network Digital Twin)
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Machine Learning Attack Detector




Machine Learning model life cycle
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Source: https://www.slideshare.net/AxeldeRomblay/mlbox-082-178177773



Machine Learning Attack Detector in Spider
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. ML Virtual Machine
Traffic Injection
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- Traffic is previously generated in the Mouseworld laboratory
The traffic is mirrored into the ML Virtual Machine
Tstat captures and extracts traffic flow-based information
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Integration into SPIDER Architecture




ML in Spider Architecture
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Blue Team Training Process




Blue Team Training Process
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In SPIDER exercise scenarios:
_ The trainees who exercise with ML defensive tools are called Blue Team
- The experts who run the attacks are called Red Team

Blue Team is able to:

— Select a specific dataset to be injected

— Select a specific ML model to be deployed into the ML VM
- Select the ML minimum confidence value

- Review ML results in the Spider Dashboard
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Conclusions and Future Work




Conclusions and Future Work
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Conclusions:

- Mouseworld is integrated into SPIDER by traffic injection

- ML is integrated into SPIDER as packet aggregator and classifier
- Trainees are able to run exercises using ML modules in SPIDER

Future Work:
- Move from VMs to Containers
- Integration of non-supervised models for anomaly detection
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Thanks!




