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Glossary

Term Explanation
Asset Pricing Evaluation of a 5G asset via the impact of a cyber attack using the

DCF approach.
APT Advanced Persistent Threat
CIC Cybersecurity Investment Component
CRAE Continuous Risk Assessment Engine
CVaR Condition Valua at Risk
DCF Discounted cash Flow
DMZ Demilitarised Zone
GDPR General Data Protection Regulation
PV Present Value
NPV Net Present Value
SME Subject Matter Experts
VaR Value at Risk
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1 EXECUTIVE SUMMARY

Assessing and controlling cyber risk is the cornerstone of information security management. However,

these tasks are notoriously challenging not only due to the uncertainties associated with a cyber attack

and the resulting risk exposure for an organisation, but also due to the availability of scarce resources

for investment in mitigation measures. In this report, we develop an asset pricing and impact loss anal-

ysis (APILA) framework for gauging how a firm’s financial risk exposure depends on key uncertainties

underlying a cyber security breach. First, in the asset pricing part of the analysis, we evaluate the finan-

cial impact that a firm incurs as a result of a cyber security breach that progresses in phases. The latter

is a critical aspect of the analysis as it not only signifies the serial approach to exploiting a system’s

vulnerabilities, but also facilitates the application of the discounting cash flow method for analysing

how key uncertainties may affect the impact of a security breach. Second, in the impact loss analysis

part of the framework, we assume that the duration of an attack phase, i.e. the time required to exploit

a vulnerability, is a random variable and we derive a closed-form expression for the distribution of the

Present Value (PV) of the financial impact of the cyber attack. In turn, this facilitates the development

of key risk metrics that can be subsequently used to formulate optimisation objectives for deriving the

optimal set of mitigation measures.
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2 INTRODUCTION

2.1 PURPOSE AND SCOPE

The impact of a cyber attack can vary significantly depending on the type of security breach, the size

of the organisation, industry and country and how well prepared it was. The APILA framework aims to

estimate the impact of a cyber attack against various assets of an organisation and derive risk metrics

to assess the implications of key underlying uncertainties. Hence, this report will start by identifying

the assets that an organisation typically needs to protect. The objective is to estimate the economic

implications of a cyber attack, in order to facilitate the evaluation of the economic sustainability of dif-

ferent controls. Specifically, we develop a method for classifying vulnerabilities based on the financial

risk exposure they may entail if compromised, while loss analysis is carried out by measuring the sys-

tem’s risk exposure under a given configuration using standard risk measures, such as Value at Risk

(VaR) and Conditional VaR (CVaR). Subsequently, these risk measures will be utilised in the optimisa-

tion models of D5.4 [3] in order to facilitate informed investment decisions in relation to measures for

mitigating vulnerabilities, taking into account possible interdependences between them and various

constraints.

2.2 MOTIVATION

Cyber defence is a standard part of enterprises’ agenda, whereas hackers improve upon their tech-

niques, thereby increasing the cyber risk levels around the world. Hence, assessing cyber risk is not

just a necessary process that enterprises must conduct, but a natural way to realise the exact weak-

nesses, threats, and current security level of an organisation towards mitigating this risk. The existence

of several tools that assess cyber risk and a vast number of papers and textbooks in this field demon-

strates the importance of the risk assessment domain for both the industry and academia, as well as

the wide variety of challenges to be addressed with this domain [12, 22, 30, 35]. Among the challenges

that organisations must tackle in order to improve their cyber security posture, is that of gauging the

financial impact of cyber breaches. This is a particularly critical task because it provides the necessary

input for the formulation of models that address the optimal selection of mitigation measures.

Addressing these challenges is important, as, for example, the General Data Protection Regulation

(GDPR) poses fines up to 20 million euros, or, in the case of an undertaking, up to 4% of the total

turnover of the preceding financial year, whichever is higher [48]. However, these challenges are far

from trivial, since overcoming them requires the development of novel techniques that combine risk
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assessment and control optimisation in a way that accounts for critical aspects of the cyber attack

itself, the relevant underlying uncertainties and constraints associated with the selection of mitigation

measures [19, 45]. Examples of key uncertainties associated with a cyber attack is the time required to

exploit a vulnerability before moving to the next one and the extent of the associated impact (cost) to

the targeted organisation. Indeed, both exploitation time and cyber impact are likely to vary randomly,

as they depend not only on the skills of the attacker but also on the level of cyber preparedness and

response of the organisation.

Furthermore, an advanced cyber attack, like an Advanced Persistent Threat (APT), typically breaches

its targets in phases, thus reflecting the process in which an adversary gradually exploits a series

of system-, network- or even user-oriented vulnerabilities [52]. Advanced attacks may also remain

stealthy inside a system seeking for available vulnerabilities to exploit. APTs are considered as a major

threat attacking systems not only in multiple phases but for a highly variable period of time. The num-

ber of days an adversary remains in a targeted network before they are detected is referred to as dwell

time. For example, the FireEye M-Trends 2020 Special report found that the mean dwell time for 2019

in the USA is 60 days and in both EMEA and APAC is 54 days [21]. This varying time spent by the attacker

during each attack phase is associated with the risk inflicted by the presence of a threat actor within a

system. Therefore, each phase poses its own risk value, which depends on both the exploitation time

and characteristics of the available vulnerabilities.

In this report, we develop a framework for assessing the financial impact of a cyber attack by ac-

counting for the serial nature of a cyber security breach and the uncertainty in the time required to

exploit a vulnerability. Consequently, the contribution of this framework is two-fold: First, we incorpo-

rate key uncertainties into the traditional Discounted Cash Flow (DCF) method in order to make it more

suitable not only for cyber risk assessment and investment decision-making, but also for supporting

risk management within a 5G cyber security context. Second, we develop a case study, as in [20], for

the purpose of demonstrating the application potential of this framework in a highly innovative area

of telecommunications. To the best of our knowledge, this framework is the first that adopts a DCF

approach to modelling and assessing cyber risk for multi-phase attacks taking into account the uncer-

tainty in the duration of each phase, and proposes risk metrics as inputs to optimisation objectives that

address the optimal selection of mitigation measures. Such a framework can assist decision makers

and system administrators to allocate limited resources to patch vulnerabilities and contain advanced

threats such as APTs.
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2.3 RELATION TO OTHER WORK IN THE PROJECT

A diagrammatic overview of the connection of the different tasks within WP5 as well as between WP5

and the general SPIDER platform is indicated in Figure 1. Note that, as this report relates to D5.3, the

relevant task is circled in red. Specifically, Figure 1 indicates: i. how the SPIDER simulated/emulated

infrastructure as well as the SPIDER platform infrastructure provide data to be utilised within WP5; ii.

the nature of the information and the way that this information is passed from one WP5 module to

another; and iii. how the output of WP5 is reported to different SPIDER visualisation components.

Figure 1: WP5 reference architecture.

2.3.1 INTER CONNECTIONS

There are two main links between WP5 and the general SPIDER platform. The latter is identified in

Figure 1 and is decomposed as described below:

i The SPIDER Simulated/Emulated Infrastructure

Through the SPIDER Simulated/Emulated Infrastructure information is collected about security

events, incident alarms as well as the company, business and IT profile. This information is passed

on to T5.1 to be analysed by the Continuous Risk Assessment Engine (CRAE). Additionally, infor-

mation about Attackers, Assets and Controls are also collected by the SPIDER Simulated/Emulated

Infrastructure and passed on to T5.1 as well as T5.5.

ii The SPIDER Platform Infrastructure
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The SPIDER Platform Infrastructure collects information about platform events and passes them

on to T5.2. Hence, T5.2 is not directly linked with the quantitative analysis of WP5, but is part of it

in terms of: i. developing the necessary mechanisms (a.k.a. controls) to ensure the security and

privacy of the data held in the SPIDER platform, i.e. the protection of the platform itself; and ii.

providing a real-time view of the security posture of the protected organisation where SPIDER is

deployed.

2.3.2 INTRA CONNECTIONS

In order to demonstrate the strategic positioning of the APILA framework, we discuss here how T5.3

communicates with other elements within WP5. Note that the quantitative analysis within WP5 begins

with T5.1 [2], which is designed to provide risk model templates to enable cyber risk analysis of tar-

get systems. Specifically, T5.1 receives data from the SPIDER Simulated/Emulated Infrastructure and

provides improved information on asset values to T5.5, i.e. the Cybersecurity Investment Component

(CIC). As indicated in Figure 1, in addition to this input, the CIC also receives information on attackers,

assets and controls directly from the SPIDER Simulated/Emulated Infrastructure, and, together with

the information from T5.1, the CIC calls the methodologies developed in the APILA framework.

More specifically, the CIC is highlighted in red in the partial view of the SPIDER reference architecture

(developed in D2.7 [1]) presented in Figure 2. As shown in the SPIDER platform’s reference architecture,

the CIC receives the improved asset values from the CRAE, i.e. the part of SPIDER that calculates risks

and asset value based on given assets relationships, vulnerabilities, controls, and threat appetites.

Figure 2: Partial view of the SPIDER reference architecture.

Although the final details about the CIC will be given in D5.7 [4], below, we describe briefly the main

elements of the CIC, among which D5.3 plays a vital role, and illustrate them in Figure 3 in order to
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demonstrate the position of the D5.3 relative to the other WP5 elements. Note that although Figures 1

and 3 illustrate similar information, there is a discrepancy in terms of exposition as they reflect different

levels of abstraction.

i. The CRAE receives the same scenario data from the SPIDER platform as the CIC. Using this data

it computes an improved asset value and provides this to the CIC.

ii. The SPIDER Dashboard, feeds the CIC with a variety of user data, including budget constraints,

preferred optimisation strategies and additional control-related user preferences.

iii. The Kafka stream helps the CIC to interact with other SPIDER components including the SPIDER

platform, the CRAE and the SPIDER Dashboard. It parses the data coming from the CRAE as well

as the input coming from the SPIDER Dashboard and stores it within the User/System database

(DB).

iv. The User/System DB stores the data collected by the Kafka stream and aggregates it for later use

by the Economic Models. Some of this data can be fed back to the Kafka stream in the form of

statistics, such that they can be visualised by the SPIDER Dashboard. Since the SPIDER Dashboard,

SPIDER Platform, and CRAE can all continuously update, it is important that the CIC must first wait

until it has obtained an adequate amount of information in order to calculate an optimal decision,

and will have to automatically recalculate its decision when new data arrives.

v. The Economic Models use the data stored in the CIC’s database to evaluate the impact of a serial

cyber security breach.

vi. The valuation produced by the Economic Models will be optimised by the Control Optimisation.

This process results in a set of optimal controls given constraints provided by the user.

Figure 3: Overview of the CIC architecture.
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Note that the APILA framework developed in D5.3 builds upon and complements the risk assess-

ment framework of the CRAE. Indeed, the former receives input from the CRAE on key 5G network ele-

ments (e.g. assets), which, in turn, enables the integration of D5.3 within the general SPIDER platform

and facilitates a coherent risk assessment framework. In addition, D5.3 utilises and extends traditional

capital budgeting techniques in a way that facilitates an advanced evaluation of the impact of a cy-

ber attack by incorporating key underlying uncertainties. Hence, viewed as an independent tool, the

contribution of D5.3 is that it proposes an advancement of traditional evaluation and risk assessment

techniques. However, viewed as part of the CIC, D5.3 facilitates the development of risk measures that

will be passed on to D5.4 [3]. In turn, the latter aims to develop a decision support framework under-

lying the SPIDER’s CIC via an optimisation model for addressing the problem of optimal allocation of a

limited budget to a subset of available controls. Finally, the output from both D5.3 and D5.4 is returned

to the CIC to be reported to different SPIDER visualisation components.

Friday 7th January, 2022 Page 16 of 55



D5.3: Asset pricing and impact loss analysis:
an empirical framework

2.4 STRUCTURE OF THE DOCUMENT

The report is organised as follows. In Section 3, we present an overview of the methodology that con-

sists of three main components: i. data collection; ii. evaluation framework; and iii. demonstration.

Specifically, the process of data collection is presented in Section 3.1, which describes the nature of

the data and how it is passed on from one SPIDER component to another. Also, Section 3.2 presents

an overview of how the DCF method is utilised not only for the purpose of asset evaluation but also

for risk assessment. Furthermore, Section 3.3 provides a high-level demonstration of the output of the

APILA framework, while Section 3.4 concludes with an overview of the novelty and innovation of this

work relevant to the existing literature.

Subsequently, we proceed by discussing in Section 4 the relevant literature in order to empha-

sise how the proposed framework contributes to existing risk assessment frameworks within the area

cyber security economics. Specifically, the literature review demonstrates how the APILA framework

builds upon and extends the traditionally static DCF method by incorporating key uncertainties. Thus,

we emphasise how we improve this method by making it more appropriate for not only asset evalua-

tion but also risk assessment within a cyber security context. Further discussion on the work developed

in this report is presented in Section 5.

Next, in Section 6, we proceed with the quantitative part of the analysis that begins with the pre-

sentation of the assumptions and the notation that will be used throughout the report. We begin the

analysis by deriving the expected PV for the first phase of an n-phase attack in Section 7.1.1. Subse-

quently, in Sections 7.1.2 and 7.1.3, we derive the analytical expression of the expected PV for phase

2 and phase n, respectively. Section 8 presents the application potential of the APILA framework via a

simple toy example and Section 9 concludes the report.
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3 METHODOLOGY FOLLOWED TO PRODUCE THIS DELIVERABLE

3.1 DATA COLLECTION

We begin the description of the methodology with an overview of the key input on which it is based.

Specifically, we include below a preliminary description of key qualitative network elements, such as,

the assets and their associated vulnerabilities, as well as a description of quantitative data regarding

asset values, probability of attack and probability of successful exploitation per vulnerability of each

asset.

3.1.1 QUALITATIVE DATA

- Assets (i = 1, 2, . . . , n)

An asset is defined as an item of value to achievement of organisational mission/business ob-

jectives [42]. Assets can either be tangible objects (e.g. hardware, software, computing platform,

network device, or other technology components), or intangible (e.g. information, data, trade-

mark, copyright, patent, intellectual property, or reputation). The aim of cyber security is to safe-

guard the confidentiality, integrity and availability of the organisation’s assets. An indicative list

of assets is included in Figure 12.

- Vulnerabilities (j = 1, 2, . . . ,mi)

A vulnerability is defined as a weakness in an information system, system security procedures,

internal controls, or implementation that can be exploited or triggered by a threat [42]. Vulner-

abilities can be leveraged by adversaries to gain access to an asset, change the asset’s state or

move laterally to another asset.

The SPIDER platform provides a full list of vulnerabilities present in the system’s environment.

Each vulnerability is associated with a unique identifier, attack vector, attack complexity, required

authentication and likelihood of being attacked.

In addition to a list of assets and a list of vulnerabilities, the data provided by the SPIDER com-

ponents also contains the relations between assets and vulnerabilities. These relations can be

used to construct an attack graph, with the assets (or asset states) denoted as nodes, and the

vulnerabilities represented as the transitions between these nodes.

Information regarding the assets, vulnerabilities and their relations (attack paths) in an organi-

sation environment can be manually obtained from Subject Matter Experts (SMEs) or using au-
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tomated processes [51]. In our models we make use of data provided by other SPIDER compo-

nents. This data includes a list of tangible assets in the environment with their associated value

and identifiers. Intangible assets are indirectly included into the value of the tangible assets (e.g.,

valuable data increases the value of the database in which it is contained, or the server hosting

the database). An indicative list of vulnerabilities is indicated in Figure 13.

3.1.2 QUANTITATIVE DATA

A description of quantitative data in relation to the aforementioned indicative list of assets and vulner-

abilities are included below.

- (Improved) Asset values, Ai

Asset valuation is one of the core steps of the risk assessment process and needs to consider

the context and particularities of the organization being evaluated, the asset particularities, and

the scenario characteristics. However, first and foremost, it should be clarified that there is no

specific norm or rule of thumb to define the objective value of an asset within a network.

Many methodologies can be followed or even combined together. The most prominent one is to

bind the value of an asset with the CIA (Confidentiality, Integrity and Availability) consequences

of a potential exploitation. The weights that affect the asset score depend on the nature of the

asset, i.e. someone could start by a de-normalized value of [0.33C+0.33I+0.34A], then adjust the

coefficients based on the asset nature, and, finally, apply a multiplication factor that would project

the intermediate calculation to the axis of cost.

Although this impact-based formula is very pragmatic, since it takes under consideration the op-

erational aspect of the nodes, it overlooks one parameter that is highly crucial; which is “the usage

of a node as a hacking stepping stone”. Most of the time, adversaries try to spot the achilles heel

of an infrastructure that will simplify the overall exploitation. Such assets include domain con-

troller, ldap registries, credential repositories, etc. In the frame of SPIDER these parameters are

taken under consideration.

In terms of T5.1, based on an initial Asset Value quantitative metric provided by the Spider plat-

form, the CRAE determines the improved asset values that will be used by the models at CRAE

(D5.1) and CIC (D5.3). Specifically, the CRAE considers the company profile information in the risk

assessment process. This information can include the information sent by the SPIDER platform,

and the business profile that can be edited through a personalized questionnaire at the CRAE
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interface. This questionnaire allows for a high level of personalization for each of the scenarios.

Furthermore, the CIA characteristics of an asset are also considered to determine the asset value.

At CRAE, they range from 0 to 10, and can be edited using an asset questionnaire where it is also

possible to indicate if the data used can be considered as “personal data” that may also influence

the asset value, depending on the asset type and the scenario characteristics.

- Probability of attack, Si, and successful exploitation, Ri

Generally, there are two distinct ways to provide probabilities of attack and successful exploita-

tion. The first one is the “ground-truth-oriented” while the second one is the “user-defined” or

more precisely the “appetite-oriented” one. The “ground-truth-oriented” implies that there are

specialized probes installed in various assets of the nodes (that constitute the service graph)

and a fully-operational Security Operation Center (SOC) is able to interpret the raw-logs to pro-

cessed Alerts. The produced data-stream of the alerts can be deterministically mapped to prob-

ability values. On the contrary, the appetite-oriented way makes use of global intelligence for-

mulated by honeypots, security intelligence networks and disclosed statistics. The term ‘appetite’

derives from ISO27001, where risk officers are urged to perform risk calculations based on ar-

tificial probabilities. In this sense, a pessimistic appetite would imply that all attacks irrelevant

of their complexity are highly probable or vice versa for an optimistic appetite. Finally, regard-

ing the exploitability, it may be directly derived by the CVE metamodel. More specifically, the

NIST calculations presented in https://www.first.org/cvss/specification-document may be

fully inherited.

- Exploitation hardness

The time to compromise or exploit a vulnerability is defined as the time required by an attacker

to gain some level of privilege on some system component. This depends on a number of el-

ements, such as the nature of the vulnerabilities and the attacker skill level. Consequently, the

exploitation hardness is modelled as a random variable. Note that the APILA framework does not

pose any restrictions on the type of distribution that exploitation hardness follows, however, for

ease of exposition and demonstration, we will assume that exploitation hardness is an exponen-

tially distributed random variable. Note that this assumption has been adopted in the existing

literature [10], however, it has not been integrated within models for both risk assessment and

optimisation of mitigation measures.
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3.2 EVALUATION FRAMEWORK

The economic evaluation framework reflected in the asset pricing part of D5.3 builds upon the tra-

ditional DCF method. In finance, DCF analysis is a method of valuing a security, project, company, or

asset using the concept of the time value of money. Specifically, DCF analysis determines the PV of a

steam of cash flows based on estimations about its future evolution. In D5.3, we assume that a cyber

attack is carried out in stages, which implies that its impact is realised at discrete points in time, and

we adopt the DCF approach in order to estimate the PV of the overall impact of a cyber attack. This is

illustrated in Figure 4 for the case where a cyber attack is carried out in three stages. Note that in or-

der to compromise the first asset, the attacker requires an amount of time equal to T1, and, similarly,

the required amount of time for assets 2 and 3 is T2 and T3, respectively. Assuming a continuously

compounded discount rate, denoted by ρ, the PV of the impact K1 is e−ρT1K1. Thus, the PV is used

to introduce the concept of discounting into the calculation of the current value of the impact of an

attack that may require a substantial amount of time to be carried out. In turn, this supports effec-

tive decision-making [14] and facilitates the development of risk measures to assess the financial risk

exposure of the defender.

Figure 4: Overview of the DCF method.

Hence, the objective is to model the financial impact of a cyber attack by adopting a techno-economic

approach that couples capital budgeting for evaluation of a serial cyber security breach with key un-

derlying uncertainties. In terms of context, the evaluation framework consists of the underlying system

model with an organisation that wishes to protect its systems and hackers who target the organisation,

and a network of different system assets that inherently host interconnected vulnerabilities, and, as a

result, can be sequentially compromised via a multi-phase attack.
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3.3 DEMONSTRATION

Although the demonstration of the APILA framework will be presented thoroughly in D7.4 [5], here

we provide a preliminary overview of the context within which the case study (in the form of a toy

example) demonstrating the application potential of the APILA framework will be developed. Note

that the APILA framework is flexible to support risk assessment in a wide range of contexts, however,

it requires two key elements. First, it assumes that the cyber attack is carried out in discrete stages

[51]. Second, in each stage the attacker exploits an asset of the network by compromising any one

of its vulnerabilities. Therefore, for illustration purposes, we may consider a high-level context where

a sample network topology depicts the inter-connectivity between different assets in each layer of a

network architecture. For example, we may assume that the latter consists of three layers, namely the

demilitarised zone (DMZ), the Intranet (or Middleware) and the Private Network, as illustrated in Figure

5. Each layer of the architecture may signify the importance of the asset to the organisation and the

level of security the attacker has to breach or bypass to successfully exploit a vulnerability, and, in turn,

an asset, thereby moving to the next layer.

Figure 5: Diagrammatic overview of a network topology.

Once the relevant network (quantitative and qualitative) characteristics are collected, we proceed

with the evaluation of the impact of a cyber attack for each asset taking into account the implications of

exploitation hardness as well as the probabilities of attack and successful exploitation per vulnerability.

Thus, we are able to determine not only the impact level of a cyber attack but also its PV. Finally, since

the time by which the impact level is discounted is random, the PV of the impact level is also a random
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variable, which allows us to determine its distribution, and, in turn, key risk metrics. Indeed, by deriving

the distribution of the PV of the impact level, we can obtain metrics for gauging the amount of risk

exposure and utilise these to develop objectives for optimising the selection of mitigation measures.

Additionally, as indicated in Figure 6, we do not restrict the APILA framework with assumptions

about the distribution of exploitation hardness, so that it can facilitate the analysis of a wide range of

empirical data. Indeed, exploitation hardness may be different among the different assets, and, failing

to account for this may result in cycles of over- or under-investment, and, in turn, capital intensive

corrective policy actions. In the literature, a wide range of distributions have been adopted to reflect the

randomness of activity duration. Examples of probability distributions that can represent the statistical

properties of the random activity duration include the beta [7, 29], log-normal [33, 47] and phase-type

distributions [13].
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Figure 6: Simulation of the financial impact of cyber attack.
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3.4 INNOVATION

The novelty of the APILA framework developed in D5.3 is reflected in the integration of key uncertain-

ties within the DCF method and the flexibility of the latter to be adopted within optimisation methods

for optimal selection of mitigation measures.

i. Capital budgeting techniques such as the DCF method have been utilised for project evaluation

extensively. However, applications of this method typically ignore the implications of various un-

derlying uncertainties. To address this disconnect, we develop a framework for evaluating the

financial impact of a cyber attack that can facilitate critical uncertainties, and, thus, enable im-

proved risk assessment.

ii. The time to exploit a vulnerability is recognised as an important aspect of a cyber attack. Indeed,

it has been reported that it may take even months for an attack to be carried out successfully

[32]. Despite its relevance and importance, this aspect has yet to be formally implemented within

methods for evaluating the economic implications of cyber attacks.

iii. Among other things, the output of the APILA framework may include important risk metrics, e.g.

VaR and CVaR, that can be used to gauge the financial risk exposure of a network following a

cyber attack. Effectively, this enables a more formal treatment of cyber risk and opens up the

potential to derive novel insights regarding financial aspects of cyber risk.

iv. The risk measures produced by the APILA framework can be integrated within the optimisation

framework of D5.4 in order to drive the selection of mitigation measures. In turn, this facilitates

the development of innovative software applications that offer decision support for risk manage-

ment and investment in cyber security within the context of 5G networks.
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4 BASELINE KNOWLEDGE

4.1 TRADITIONAL RISK ASSESSMENT MODELS

Risk management is a process of identifying risks and implementing plans to address them [8]. The

essential parts of the risk management process are: i. risk assessment; and ii. risk control/mitigation.

Thus, risk assessment is a sub-process of risk management consisting of risk identification and risk

analysis. First, risk identification lists and classifies elements of risk, in terms of threats, vulnerabilities

and impact. Then, risk is estimated with risk analysis. Generally, risk analysis requires two risk parame-

ters, i.e. the probability of an attack and the amount of impact of the attack. This is typically formulated

mathematically as:

Risk = Probability × Impact

Note that risk analysis can be quantitative or qualitative, depending on whether real values or abstract

levels are used. The framework presented in D5.3 focuses on these two main tasks of risk assessment,

and can, therefore, be decomposed as follows: First, an evaluator identifies the main parameters of

risk. These may include valuable assets, possible threats and existing vulnerabilities in the security

system. Second, risk is analysed by determining the likelihood and possible impact of an attack and

aggregating these values.

As we will demonstrate in Sections 6, 7 and 8, the APILA framework will pave the way for the method-

ologies developed in D5.4 that address the second process of risk management, i.e. risk control. The

latter is a sub-process for selecting and implementing measures to mitigate risks. Although there may

be different alternative options, we will be mainly focusing on risk mitigation, which consists of actions

helping to reduce risk (i.e. reduce the probability of a risky event occurrence, its impact or both). As it

will be discussed more thoroughly in D5.4, a strand of the cyber security economics literature draws

on the theory of investment and project valuation under uncertainty [11, 15], with the main objec-

tive to derive the expected value of investment in cyber security controls along with the investment

threshold price and the probability of investment within a given time horizon [18]. As such, this work

typically ignores the degree to which financial risk is hedged. In finance, the risk exposure of a project

is measured by its VaR, which is the minimum project value for a given confidence level during a spec-

ified time horizon, and by its CVaR, which is the expected value of the project given that it is less than

the VaR. Such risk measures are relevant in the area of cyber security and can be developed to gauge

the financial risk exposure of an organisation following a security breach, however, applications within

cyber security economics remain somewhat underdeveloped.
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This is partly due to the difficulty of quantifying or estimating key parameters, such as the impact of

a successful cyber attack. Indeed, quantifying the impact of a cyber attack is a fundamental factor for

building risk assessment models [9, 17, 24]. However, the impact of a cyber attack may be very hard

to quantify in advance because of the nature of information assets (e.g., private identifiable/health

information), while reputation cost, which accounts for a large portion of the whole damage is very

difficult to estimate. Not to mention that it is almost impossible to verify correctness of the estimated

risks [27]. Additionally, the increasing number of interacting and evolving uncertainties underlying the

attacks and the limited time to make executive decisions renders these models considerably complex.

Early examples of empirical models that focus on the development of risk measures, such the VaR

and the CVaR, within a cyber security context include Wang et al. [49], who develop a model of invest-

ment in information security and utilise VaR to evaluate different investment tradeoffs. Specifically,

using data on daily activities from a large US financial institution, they measure the risk of daily losses

an organisation faces due to security exploits and use extreme value analysis to simulate the distribu-

tion of the daily losses and estimate the VaR. Thus, they develop a framework, whereby investment

choice is based on a decision-maker’s risk preferences instead of the minimization of the expected cost.

Rakes et al. [39] present an integer programming model for determining optimal countermeasure se-

lection based on threat likelihoods, under expected value and worst-case conditions. Their analysis

is based on data on security threats, countermeasures and possible losses from successful breaches

found in EndpointSecurity.org. An extension of this line of work is presented in Sawik [43], who utilises

the same source of data but applies VaR and CVaR within the integer programming model of [39]. Also,

taking the perspective of a smart grid, Law & Alpcan [31] investigate the impact of false data injection

attacks, which threat the security of smart grid severely, by aiming at tampering meter measurements

and affecting the results of state estimation. They present a game-theoretic approach to smart grid

security by combining quantitative risk management techniques with decision making on protective

measures. Results indicates that different risk measures may lead to different defence strategies, but

the CVaR measure allows a decision maker to prioritise high-loss tail events.

More recently, Peng et al. [36] propose a novel application of marked point processes to fit and pre-

dict extreme cyber attack rates, while using the VaR to measure the intensity of cyber attacks. Using

real-world data collected via network telescope and honeypot, they demonstrate how this approach

offers accurate in-sample fitting and out-of-sample prediction performance. Also, Peng et al. [37] de-

velop the first statistical approach based on a Copula-GARCH model that uses vine copulas to model the

multivariate dependence of real-world cyber attack data. Results indicate that ignoring the multivari-

ate dependence causes a severe underestimation of cyber security risks. Also, an investigation of the
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optimal balance between prevention, detection and containment safeguards under uncertainty is pre-

sented in [28]. The authors find that adjusted prevention impacts social cost and optimal configuration

of safeguards the most. They identify gaps in existing cyber security frameworks’ reliance on preven-

tion and propose recommendations addressing the gaps. In the direction of cyber security resilience,

[16] develop a model based on the needed security controls to facilitate defined security functions.

Considering affordable residual risk, budget, resiliency and usability constraints, the authors propose

an optimal selection of critical security controls for optimal and resilient risk mitigation planning.

4.2 EXTENSIONS OF TRADITIONAL LITERATURE

Despite their contribution, the aforementioned models overlook key uncertainties, such as the time it

takes to exploit a vulnerability and the cost that the system incurs once a vulnerability is compromised.

However, such features must be implemented within quantification tools to assist in the anticipation

and control of the financial impact of cyber attacks [23, 40]. For example, Arnold et al. [10] formalise

the semantics of attack trees so as to allow their use for a probabilistic timed evaluation of attack

scenarios. Specifically, they study the probability of a successful attack as time advances, to address

the question: what is the probability that the system is successfully compromised within a given time

interval? By utilising a framework based on acyclic phase-type distributions, they enable the derivation

of the distribution of the time until the attack is successfully executed. Thus, their analysis of attacks is

extending earlier time-abstract analyses [53] that considers only the probability of whether or not an

attack eventually could take place, without evaluating the probability of success as a function of time.

In the same line of work, Harang and Kott [26] explore approaches to modelling the detection pro-

cess of cyber infections on a computer network and analyse sets of intrusion detection records ob-

served on networks of organizations protected by a form of intrusion detection and prevention ser-

vice. Their results indicate that the timing of when the reports are filed is not uniformly distributed

over a time interval but instead exhibits significant burstiness. Furthermore, they find that this bursti-

ness can be modelled by a simple two-state model. In line with this result, we assume in this report

that the time to exploit an asset of a network follows a generic probability distribution so that result-

ing risk assessment framework is flexible to be adopted for analysing a wide range of empirical data.

In addition, unlike existing cyber risk-assessment models, we emphasise the serial nature of a cyber

attack in order to establish a more accurate evaluation of its impact by integrating key uncertainties

within traditional capital budgeting methods. Although the latter have been developed and adopted

extensively for the evaluation of serial projects, their application potential has not be extended within
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the context of cyber security.

Indeed, since our work focuses on assessing the risk associated with a security breach that pro-

gresses in phases, a more pertinent framework is that of Creemers [14], who studies the net present

value (NPV) of a project with multiple phases that are executed in sequence. A cash flow may be in-

curred at the start of each phase and a payoff is obtained at the end of the project, while the duration

of each phase is a random variable with a general distribution function. The novelty of this work is

that it derives an exact closed-form expression for the moments of the NPV of a project as well as a

closed-form approximation of the distribution of the project’s NPV. By interpreting the randomness

in the duration of each phase as the time required to exploit a vulnerability, we adopt and extend

[14] within the context of cybersecurity, and derive risk measures to quantify the risk exposure that a

security breach entails.

Specifically, the contribution of this work to the existing cyber security literature is threefold. First we

develop a framework that integrates key uncertainties associated with a cyber attack within traditional

capital budgeting methods, thereby rendering the latter more suitable not only for project evaluation

but also risk assessment. Second, we evaluate not only the impact of a cyber attack but also its distribu-

tion, which, in turn, facilitates the development of measures for gauging the risk of a security breach.

Third, we formulate objective functions using these risk measures that can be optimised to yield a set

of mitigation measures.
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5 WORK DEVELOPED

This report builds upon two main strands of the existing literature with the objective to extend the

application potential of traditional evaluation and risk assessment frameworks within the area of cyber

security economics and 5G networks. Consequently, the work developed in this report can be classified

as follows:

i. Asset pricing

The process of asset pricing aims to determine the value of an asset as this is reflected upon the

financial impact that a successful cyber attack would entail. In short, this process is twofold and

consist of: i. incorporating the asset values obtained from D5.1 within the formula for evaluating

the impact of a successful cyber attack on the assets of a 5G network; and ii. applying a discount-

ing cash flow (DCF) method to determine the present value of the impact of a cyber attack for

each asset of the network. This process takes into account the nature of the cyber attack and

analyses the implications of key uncertainties associated with the impact of an attack and the

time it takes to exploit an asset, which, in turn, facilitates a more rigorous treatment of risk.

Note that, although the alternative term of asset valuation may also be adopted, we have chosen

asset pricing instead to avoid any overlap with the terms used in D5.1, which produces asset values

to be utilised within D5.3, as demonstrated in Section 6.2 via Eq. (1).

ii. Impact loss analysis

Here we take a stylised approach to the modelling of key uncertainties associated with a cyber

attack. Specifically, we assume that the time to exploit an asset is random as it may depend on

the nature of the asset itself, the network’s existing security infrastructure and the skills of the

attacker. Allowing for such uncertainties within the DCF method, facilitates the process of risk

assessment, as it enables the derivation of the distribution of the impact of a cyber attack and

the associated risk metrics.

Note that the stepwise nature of a cyber attack implies that attacker exploits the assets of the

network sequentially. Specifically, the attacker must exploit successfully one of the vulnerabili-

ties of an asset of the network before moving on the next asset. In turn, this implies a connection

between the assets through their vulnerabilities in a way that a successful attack formulates an

attack path that goes through one vulnerability per asset, for all the assets of the network. Con-

sequently, by changing the likelihood of an attack on a given vulnerability or the likelihood that
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an attack is successful, we effectively alter the dependence among vulnerabilities and the prop-

agation of an attack across a network.
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6 CYBER RISK ASSESSMENT FRAMEWORK

In this section, we present our framework for modelling cyber risk by adopting a techno-economic ap-

proach that couples capital budgeting for valuation of a serial cyber security breach with key underlying

uncertainties. In summary, this section discusses: i. the underlying system model with an organisation

(defender) who wishes to protect its systems and hackers who target the organisation (attacker); ii.

how the different system assets that inherently host vulnerabilities are linked to each other, and, as

a result, how a multi-phase attack can sequentially compromise these assets causing damage to the

defender; iii. how the DCF method can be adopted to gauge a system’s financial risk exposure; and

iv. how risk metrics can be developed into objectives for optimising the selection of mitigation mea-

sures. Note that part (iv) is directly relevant for the development of D5.4, where we will develop a set

of techniques for optimising the selection of controls for mitigating the impact of a cyber attack under

different constraints. Table 1 presents a summary of the notation used in this report.

Table 1: List of symbols.
Symbol Description

i phase of attack or an asset (i = 1, 2, . . . , n)
A set of attack phases or assets
V set of vulnerabilities
vij vulnerability within asset i (j = 1, 2, . . . ,mi)
Ai Value of asset i
Rij Probability of vulnerability vij being targeted (attack occurrence)
Sij Probability of vulnerability vij being compromised when attacked (success rate)
Ti Time required to exploit asset i
Wk Total duration of the attack until phase k,

∑k
i=1 Ti where 1 ≤ k ≤ n

Ki Expected impact from exploiting asset i
Ui PV of the expected impact for attack phase i
Zn Aggregated expected impact for the first n attack phases,

∑k
i=1 Ui where 1 ≤ k ≤ n

6.1 SYSTEM MODEL

We assume that the defender’s infrastructure consists of a number of systems and networks, referred

as assets, which the defender aims to protect from the attacker. The infrastructure can be represented

as a directed acyclic graph of assets and vulnerabilities, where each asset i ∈ A has a set of vulnerabili-

ties Vi = {vi1, vi2, . . . , vimi} that the attacker may exploit. These vulnerabilities may be part of software

weaknesses, as presented in the Common Weakness Enumeration (CWE)1. This assumption is aligned

with the real world behaviour of attackers, who aim to compromise as many systems and penetrate

as deep in the network as they can to increase their expected return from the attack.
1https://cwe.mitre.org/index.html
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Subsequently, the value at risk for the defender increases with increase in the number of compro-

mised systems. These adversarial interactions are modelled as a sequence of attack phases, where

phase i of an attack refers to the stage in which the attacker aims to compromise asset i by exploiting

any of its vulnerabilities vij ∈ Vi. We assume that in each phase the attacker can compromise only one

asset. A successful exploitation can lead to undesirable privilege escalation or lateral movement within

the defender’s infrastructure [34, 38], which presents a new set of vulnerabilities that the attacker can

choose to exploit further and compromise the subsequent asset.

6.2 EXPECTED IMPACT

The impact from exploitation of asset i is denoted byKi. Utilising the broadly accepted risk assessment

formula [50], expected impact = (likelihood of being attacked) x (probability of being compromised) x

(probable loss), we compute the impact as in (1).

Ki = Ai · 〈Ri, Si〉 (1)

This expresses the cyber risk posed to the defender during the i-th phase of an attack. In (1): Ai is the

value of asset i (also known as Single Loss Expectancy (SLE) [46]); rij is the likelihood of the attacker

attempting to exploit vulnerability vij , which expresses the degree of attractiveness of a vulnerability

to the attacker, which the literature also refers to as the Annual Rate of Occurrence (ARO) [46]; and sij

is the probability of the same vulnerability to be successfully breached. Further, sij captures the cur-

rent security level associated with the vulnerability, which is analogous to the hardness in successfully

exploiting the vulnerability. We express the likelihood of occurrence of an attack as, 〈Ri, Si〉, which is

the inner product between Ri = (ri1, ri2, . . . , rimi) and Si = (si1, si2, . . . , simi) of asset i [41].

As a high-level, illustrative example, consider an organisation with three assets. Let V1 = {v11, v12},

V2 = {v21, v22, v23}, and V3 = {v31, v32} be the set of vulnerabilities for assets 1, 2 and 3, respectively.

As there are three assets, the attack process involves three phases. In each phase, the attacker must

compromise one asset to be able to realise and target vulnerabilities of the next asset. As the attack

is a sequential process, the attacker would first need to exploit a vulnerability v1j ∈ V1, which corre-

sponds to the first asset before progressing to the next phase with vulnerabilities V2 that corresponds

to the second asset, and, finally, to V3, i.e. the third asset. Figure 7 presents a network of associated

vulnerabilities and the dashed red line highlights a possible attack path.
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Figure 7: Possible security breach scenario.

For the purpose of demonstrating the functionality of the APILA framework within the context of

D5.3, the relevant parameter values will be chosen randomly. Yet, based on empirical evidence, they

will reflect aspects that are either endogenous, e.g. security level, or exogenous to the system, e.g. the

skills of the attacker, which has not been model explicitly. Additionally, note that analysing aspects of

propagation requires assumptions about the way that different probabilities are linked. Although we

can chose the values of rij and sij to facilitate the analysis of any scenario of interest, we will not be

considering a stylised relationship among them, nor will we be considering the conditional dependence

among the different probabilities.

Furthermore, the calculation models developed for risk calculation and defensive strategy gener-

ation can be applied in any service graph that is arbitrarily defined. To this end, there are literally no

restrictions on how these models are fed/initialized. As if the proper serialized input is valid and the

graph is logically and syntactically correct, proper output can be produced and visualized. One of these

graphs is the graph that has been proposed in the frame of the red-blue game that has been imple-

mented. However, as already explained in the architecture deliverable, this graph is static and as such

the potential of the calculation models would be radically decreased if algorithms were implemented

’within’ the game. On the contrary, the strategic decision to create a general purpose editor that feeds

the algorithms has been taken. Through this editor, any graph with any parameters can be used to

trigger the elaborated calculations.
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6.3 PRESENT VALUE OF THE IMPACT

For an attack phase i, Ti represents the time required to exploit a vulnerability vij in Vi, and we refer

to this as the hardness of exploiting a vulnerability. We assume that Ti follows a general distribution

function denoted by ΨTi(·), as shown in Figure 8. Assuming that a successful stealthy attack consists

of a number of phases, each of them compromising an asset, we compute the duration of the attack

(Wk) as the sum of the exploitation times required to compromise an asset in each phase, i.e. Wk =∑k
i=1 Ti, 1 ≤ k ≤ n.

0 w1 w2 wn−1 wn

T1 ∼ ΨT1
(τ1) T2 ∼ ΨT2

(τ2) Tn ∼ ΨTn(τn). . .

K1 K2 K3 Kn

Figure 8: Sequential, multi-phase security breach.

To realise the expected impact that can materialise in the future, T5.3 determines the distribution

of the PV of the expected impact associated with the attack. Equation (2) expresses the aggregated

expected impact (Zn) over n attack phases as

Zn = K1e
−ρW1︸ ︷︷ ︸
U1

+K2e
−ρW2︸ ︷︷ ︸
U2

+ · · ·+Kne
−ρWn︸ ︷︷ ︸
Un

=

n∑
i=1

Ui (2)

where Ui is the PV of Ki, ρ denotes the discount rate and Wi the duration of the attack until phase

i. The PV is used to introduce the concept of discounting into the calculation of the current value of

variable, which supports effective decision-making [14]. In turn, this facilitates the development of risk

measures to assess the financial risk exposure of the defender [25].

Indeed, the need to account for the discounting effect, which also reflects one of the novelties of

the APILA framework, results from the potentially substantial time required to exploit a vulnerability. In

various occasions this has been reported to extend to a period spanning several months. Additionally,

the formulation in (2) emphasises another novelty of the APILA framework, as it demonstrates how

uncertainty can be incorporated within a traditionally static capital budgeting method. By allowing

for discounting, the randomness inherent in the time required to exploit a vulnerability is integrated

within the formula for evaluating the PV of the impact of the cyber attack, which, in turn, renders the

DCF method suitable not only as an evaluation but also as a risk assessment method.
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After gauging the potential risk exposure associated with each vulnerability, D5.4 subsequently

focuses on optimising the coverage of vulnerabilities in each asset by determining the appropriate

Security Package. A security package refers to the implementation of cyber controls, which minimise

the expected impact from an attack. This is done by patching asset vulnerabilities, thereby reducing

its attack surface or by increasing the effort required in successfully breaching the asset. D5.4 specifi-

cally considers that the implementation of a control will mitigate the expected impact of an attack by

reducing the probability of the latter being successful.
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7 ANALYSIS

7.1 RISK ASSESSMENT

One of the main functionalities of the APILA framework is to assess the PV of the expected impact from

a security breach. To achieve this, we perform a phase-wise analysis of a cyber attack to compute: i.

The distribution of the PV of the expected impact at each phase i = 1, 2, . . . , n; ii. The distribution of the

PV of the aggregated expected impact (Zn) over n phases; and iii. Risk measures to gauge the financial

risk exposure following the multi-staged attack.

7.1.1 FIRST PHASE

We begin with the first of an n-phase attack, and assume that the phase starts at time 0 and stops at

time w1 ≡ τ1, which is a realisation of the random variable W1 ≡ T1. The PV of the expected impact,

denoted by u1, is described in (3), where ρ is the discount rate and τ1 is the time at which the expected

impact K1 is realised.

u1 = K1e
−ρτ1 (3)

Consequently, the cumulative distribution function (cdf) and probability density function (pdf) of the

PV ofK1 are given in (4) and (5), respectively (all proofs can be found in the Appendix). Note that (4) and

(5) describe the general expression for the cdf and pdf of the PV, respectively, that assumes a generic

distribution for T1.

ΘU1
(u1) = 1− Φ1

(
ln

(
K1

u1

)
ρ−1

)
(4)

θU1
(u1) =

φ1

(
ln
(
K1

u1

)
ρ−1

)
ru1

(5)

If τ1 is a realisation of the random variable T1 that follows an exponential distribution with rate

parameter λ1, i.e. T1 ∼ exp(λ1), then, for a given discount rate ρ, the cdf and pdf of the PV of K1 is

described in (6) and (7), respectively.

ΘU1
(u1) =

(
u1
K1

)λ1
ρ

(6)

θU1
(u1) =

λ1
ρ

(
u1
K1

)λ1
ρ −1 1

K1
(7)
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Next, having derived the analytical expression of the cdf and pdf ofU1, we can derive the main moments

of the distribution. Thus, (8) and (9) indicate the expectation and variance, respectively.

E[U1] =
λ1

λ1 + ρ
K1 (8)

Var[U1] =

[
λ1

λ1 + 2ρ
−
(

λ1
λ1 + ρ

)2
]
K2

1 (9)

The benefit from deriving the analytical expression for the distribution of U1 is that we can now ob-

tain the analytical expression for the VaR and the CVaR of the PV of the impactK1. These risk measures

can be used to gauge the financial risk exposure of the infrastructure from the first phase of the cyber

attack, as shown in Proposition 1.

Proposition 1 The VaR and CVaR of the expected impact of the phase 1 attack is:

VaRξ (U1) = K1(1− ξ)−
λ1
ρ (10)

CVaRξ(U1) =
1

ξ

∫ ξ

0

VaRq(U1)dq (11)

7.1.2 SECOND PHASE

A cyber attack will most likely consist of more than one phases leading to the need for incrementally

extending Section 7.1.1 to analyse two phases. Note that T1 and T2 do not necessarily follow the same

distribution. Therefore, we start with the distribution ofW2 = T1 +T2 and assume that T1 and T2 follow

exponential distributions with different parameters, i.e. T1 ∼ exp(λ1) and T2 ∼ exp(λ2). Consequently,

W2 follows a hypo-exponential distribution, i.e. W2 ∼ Hypo(λ1, λ2), with cdf and pdf described in (12)

and (13), respectively [44].

ΦW2
(w2) = 1− λ2

λ2 − λ1
e−λ1w2 +

λ1
λ2 − λ1

e−λ2w2 (12)

φW2
(w2) =

λ1λ2
λ1 − λ2

e−λ2w2 − λ1λ2
λ1 − λ2

e−λ1w2 . (13)

Following the same steps as in section 7.1.1, we can determine the distribution of the PV of the impact

associated with the second phase, as shown in Proposition 2.
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Proposition 2 If W2 ∼ Hypo(λ1, λ2), then the cdf and pdf of u2 is described in (14) and (15)

ΘU2(u2) =
λ2

λ2 − λ1

(
u2
K2

)λ1
ρ

− λ1
λ2 − λ1

(
u2
K2

)λ2
ρ

(14)

θU2(u2) =
λ1λ2
λ2 − λ1

1

ρu2

( u2
K2

)λ1
ρ

−
(
u2
K2

)λ2
ρ

 (15)

while the mean and the variance of u2 is described in (16) and (17), respectively.

E[U2] =
λ1λ2

(λ1 + ρ)(λ2 + ρ)
K2 (16)

Var[U2] =
λ1λ2

(λ1 + 2ρ)(λ2 + 2ρ)
K2

2 −
λ21λ

2
2

(λ1 + ρ)2(λ2 + ρ)2
K2

2 (17)

For completeness, we may also consider the special case where λ1 = λ2 = λ. This means that T1

and T2 are i.i.d. random variables, and, therefore, W2 ∼ Erlang(2, λ) [44]. In this case, the cdf and pdf

of W2 are described in (18) and (19), respectively.

Φ̂W2
(w2) = 1− e−λw2 (1 + λw2) (18)

φ̂W2
(w2) =

∫ +∞

−∞
φ̂T1

(w2 − τ2)φ̂T2
(τ2)dτ2 = λ2w2e

−λw2 (19)

Also, the cdf and pdf of the PV of the impact associated with the second phase is described in (20) and

(21), respectively

Θ̂U2
(u2) =

(
u2
K2

)λ
ρ
[
1 +

λ

r
ln

(
K2

u2

)]
(20)

θ̂U2(u2) =

(
λ

ρ

)2(
u2
K2

)λ
ρ−1 1

K2
ln

(
K2

u2

)
(21)

while the mean and the variance of U2 is:

E [U2] =

(
λ

λ+ ρ

)2

K2 (22)

Var [U2] =

[(
λ

λ+ 2ρ

)2

−
(

λ

λ+ ρ

)4
]
K2

2 (23)

Following the same approach, we can derive the distribution of the PV of the impact for each phase,

and, therefore, we proceed in Section 7.1.3 with the presentation of the general case. However, note

that, although we can derive the analytical expression of the distribution of the expected impact for

Friday 7th January, 2022 Page 38 of 55



D5.3: Asset pricing and impact loss analysis:
an empirical framework

phase i, the VaR and CVaR for i > 1 must be obtained numerically, since analytical expressions are not

feasible.

7.1.3 n-th PHASE

The results of the previous sections (7.1.1 and 7.1.2) can now be generalised for the arbitrary n-th

phase. In this case, Wn ∼ Hypo(λ1, λ2, . . . , λn) and the cdf and pdf of Wn is described in (24) and (25),

respectively [44].

ΦWn
(wn) = 1−

n∑
i=1

e−λiwn
∏
j 6=i

λj
λj − λi

(24)

φWn
(wn) =

n∑
i=1

λie
−λ1wn

∏
j 6=i

λj
λj − λi

(25)

Next, the cdf and pdf of Un is obtained in a similar way as in the previous sections and is described in

Proposition 3.

Proposition 3 If Wn ∼ Hypo(λ1, λ2, . . . , λn), then the cdf and pdf of Un is described in (26) and (27)

ΘUn(un) =

n∑
i=1

(
un
Kn

)λi
ρ ∏
j 6=i

λj
λj − λi

(26)

θUn(un) =

n∑
i=1

1

rKn

(
un
Kn

)λi
ρ ∏
j 6=i

λj
λj − λi

(27)

while the mean and variance of Un is described in (28) and (29), respectively.

E[Un] = Kn

n∑
i=1

λi
λi + ρ

∏
j 6=i

λj
λj − λi

(28)

Var[Un] = K2
n

n∑
i=1

λi
λi + 2ρ

∏
j 6=i

λj
λj − λi

−

Kn

n∑
i=1

λi
λi + r

∏
j 6=i

λj
λj − λi

2

(29)

In the special case where λi = λ, ∀i = 1, 2, . . . , n, the general expression for the cdf and pdf of Un is

described in (30) and (31), respectively.

Θ̂Un(un) = e−λwn
n∑
i=0

(λwn)
i

i!
, wn =

1

ρ
ln

(
Kn

un

)
(30)

θ̂Un(un) =
1

(n− 1)!

(
λ

r

)n(
un
Kn

)λ
ρ−1 1

Kn
ln

(
Kn

un

)n−1
(31)
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The mean and variance of the arbitrary n-th phase is described in (32) and (33), respectively. Notice

that an increase in n lowers the expected PV of the impact, which reflects the effect of discounting.

E [Un] =

(
λ

λ+ ρ

)n
Kn (32)

Var [Un] =

[(
λ

λ+ 2ρ

)n
−
(

λ

λ+ ρ

)2n
]
K2
n (33)

Having already derived the distribution of the PV of the impact for each phase, and, in turn, the

mean of each PV, Ui, (refer to equations (8), (16), (28)), the expected PV of Zn is given by (34).

Zn =

n∑
i=1

Ui ⇒ E[Zn] =

n∑
i=1

E[Ui]

=

n∑
g=1

Kg

g∑
i=1

λi
λi + r

∏
j 6=i

λj
λj − λi

(34)

Note that (34) can now be utilised within an optimisation framework to address the problem of

optimal selection of mitigation measures. Specifically, the scope of the optimisation in this case would

be to minimise the expected PV of the impact of a cyber attack subject to different constraints, e.g.

budget constraint, which will be presented in D5.4.
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8 APPLICATION TO 5G NETWORKS

We demonstrate the application potential of the APILA framework in a 5G case study motivated by the

growing concerns over 5G security and major security events, such as the 2018-2019 soft cell campaign

that affected more than 10 different telecommunication providers in 30 countries. As a motivating

example, we consider a 5G network that consists of three assets. The vulnerabilities of each asset and

the state of the attack once each vulnerability is compromised are indicated in Table 2. Notice that

each asset has two vulnerabilities, i.e. dimVi = 2, ∀i ∈ N.

Table 2: 5G network sample characteristics
Asset 1 State Asset 2 State Asset 3 State
V11: Brute-
force Vyos
credentials

Vyos Rout-
ing VNF

V21: Routing
VNF - VyOS
Privilege es-
calation via
sudo pppd for
operator users

VNF Guest
VMs

V31: Privilege es-
calation through
bpf verifier (ker-
nel oriented)

OSM NFVO

V12: SQL Injec-
tion RFI, LFI,
RCE

Vertical Ap-
plications
(e.g. DVWA)

V12: docker
escape using
waitid func-
tion (docker
bypass)

Vertical
Apps Guest
VMs

V32: Privilege es-
calation to root
via “sudoedit -s”
(kernel oriented)

OSM NFVO

Next, in Figure 9, we organise the qualitative network characteristics indicated in Table 2 in a better

context in order to illustrate a possible propagation of a cyber attack across the different vulnerabilities.

While this is clearly a partial view of a 5G network, it presents the necessary elements in line with the

assumptions of Section 3, and, thus, facilitates the process of demonstrating the application potential

of the APILA framework.

Figure 9: Attack graph representing the attacker actions in a vulnerable artificial 5G infrastructure.

In order to carry out quantitative risk assessment for a network similar to the one of Figure 9, we

must make assumptions about key parameters. The parameter values indicated in Table 3 reflect the

required input for i. asset pricing, involving the evaluation of the impact of a cyber attack for each asset

of the network (Ki) and the determination of the associated PV, and ii. impact loss analysis, which is
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reflected in the calculation of relevant risk metrics outlined in Table 4. Thus, we will demonstrate the

implications of exploitation hardness, which, as indicated in (1) and demonstrated in Scenarios 1 and

2, is not involved in the calculation of Ki, yet, as indicated in (2), it is critical for evaluating its PV.

Table 3: Parameter values and asset pricing.
Baseline Parameters Scenario 1

Phase (i) Phase (i)
Parameter i = 1 i = 2 i = 3 i = 1 i = 2 i = 3

λi - - - 2 4 6
Ai 1.5 2 2.25 1.5 2 2.25

Ri
0.25 0.4 0.65 0.25 0.4 0.65
0.75 0.6 0.35 0.75 0.6 0.35

Si
0.45 0.24 0.44 0.45 0.24 0.44
0.35 0.63 0.23 0.35 0.63 0.23

Ki 0.5625 0.9480 0.9163 0.5625 0.9480 0.9163
Scenario 2 Scenario 3

Phase (i) Phase (i)
Parameter i = 1 i = 2 i = 3 i = 1 i = 2 i = 3

λi 1 2 3 1 2 3
Ai 1.5 2 2.25 1.5 2 2.25

Ri
0.25 0.4 0.65 0.35 0.6 0.65
0.75 0.6 0.35 0.65 0.4 0.35

Si
0.45 0.24 0.44 0.55 0.24 0.44
0.35 0.63 0.23 0.35 0.7 0.23

Ki 0.5625 0.9480 0.9163 0.9375 0.9480 0.5498

Based on these parameter values, we can analyse how the risk exposure of the network increases

as the attack progresses from one asset to the next. Note that although Figure 9 presents a realistic

network of vulnerabilities, aspects of propagation are not particularly pronounced. Therefore, we ab-

stract slightly in Figure 10 in order to illustrate the application potential of the model in a somewhat

generalised context. This is implied by the values of Ri being less than one, and, thus, unlike Figure 10,

the transition from V11 : {Bruteforce Vyos credentials} to V21 : {Routing VNF - VyOS Privilege escalation

via suddo pppd for operator users} is not certain. Note also that for ease of exposition we omit the

state of the attack following the exploitation of a vulnerability as it is not relevant for risk assessment.

Attacker

r11 s11

s12r12

r21

r22

s21

s22

r31

r32

s31

s32

V11

V12 V22

V21

V31

V32

Impact

Figure 10: High-level attack graph representing the attacker actions in a vulnerable artificial 5G infras-
tructure.
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Additionally, the different scenarios in Table 3 are designed to demonstrate the importance of (in-

creasing) exploitation hardness, and emphasise the implications of the likelihood of successfully com-

promising a vulnerability for estimating the impact of a cyber attack. Specifically, under a given network

topology, the objective of each scenario is outlined below:

- Scenario 1: demonstrate how accounting for exploitation hardness leads to a lower expected im-

pact.

- Scenario 2: emphasise the implications of exploitation hardness by allowing for marginal decrease

in the values of λi.

- Scenario 3: demonstrate the impact of a ceteris paribus increase in Ri, Si.

Figure 11 illustrates the distribution of the PV of the impact of a security breach on each asset of the

network based on the parameter values of Table 3.

Figure 11: Distribution of the PV of the impact for each asset of the network following a security breach.
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For each scenario we observe that:

- Scenario 1: A ceteris paribus increase in λi lowers the expected time required to exploit a vulner-

ability, and, in turn, raises the expected impact of the security breach.

Note that this demonstrates the implications of discounting for the value of the expected impact

and emphasises the contribution of the DCF method. Indeed, since the time required to exploit

a vulnerability is assumed to be exponentially distributed, i.e. Ti ∼ Exp(λi), its expected value is

E[Ti] = 1
λi

.

- Scenario 2: Building upon Scenario 1, we demonstrate here how an increase in exploitation hard-

ness, resulting from a decrease in λi, lowers the PV of the impact.

The contribution of this result is to demonstrate how, under certain assumptions, we can quantify

the implications of implementing mitigation measures to safeguard vulnerabilities.

- Scenario 3: The specific network topology in Figure 10 facilitates attacks on vulnerabilities (V11

andV22) that offer greater flexibility over the propagation across the network. Hence, it is plausible

to consider the implications of an increase in r11 and r22, in terms of its effect on the expected

impact.

In line with Figure 11, a list of risk metrics is also summarised in Table 4. Specifically, under each sce-

nario, we indicate key features of the distribution of the PV of Ki i.e. the expectation, the variance, as

well as the VaR. To emphasise the implications of lower λi (greater exploitation hardness), we indicate

its impact in terms of the percentage change in the expected impact and the VaR. In line with intuition,

lower exploitation hardness implies that the time required to exploit a vulnerability is shorter, which

raises the expected impact of the cyber attack by narrowing the time interval by which it is discounted.

This is demonstrated in Scenario 1, where we observe that i. accounting for this aspect of a cyber attack

the expected impact demonstrates a reduction compared to the baseline scenario, where exploitation

hardness is ignored, whereas, ii. compared to Scenario 2, where the value of λi is lower for all assets,

the expected impact reduces even further. The significance of this result is emphasised in the percent-

age change (where each Scenario is compared to the previous one) in the expected impact and VaR

that, in certain cases, is particularly pronounced.
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Table 4: Impact loss analysis.

Baseline Scenario Scenario 1
Asset 1 Asset 2 Asset 3 Asset 1 Asset 2 Asset 3

Expected Impact 0.5625 0.9480 0.9163 0.4891 0.7668 0.7059
Variance - - - 0.0041 0.0131 0.0123
VaR - - - 0.5581 0.9126 0.8551
% Change in Ex. Impact - - - -13.05% -19.11% -22.96%

Scenario 2 Scenario 3
Asset 1 Asset 2 Asset 3 Asset 1 Asset 2 Asset 3

Expected Impact 0.4327 0.6341 0.5572 0.4846 0.5672 0.5572
Variance 0.0105 0.0300 0.0259 0.0132 0.0240 0.0259
VaR 0.5539 0.8785 0.7988 0.6205 0.7862 0.7990
% Change in Ex. Impact -11.53% -17.31% -21.07% 11.99% -10.55% 0%
% Change in VaR 10.22% -10.51% -6.58% 12.02% -10.51% -0.025%

Note that each one of the risk metrics in Table 4 can not only be used for the purpose of impact loss

analysis, but, in addition, as we will also demonstrate in D5.4, they can be utilised to formulate objective

functions that can be optimised to determine the optimal set of mitigation measures subjective to

different constraints. Specifically, the contribution of deriving both the expectation of the PV of the

impact and the VaR is that we may now formulate a decision making framework that accounts for

different risk preferences.
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9 CONCLUSIONS

Efficient cybersecurity risk management relies on managerial strategies that are responsive to the var-

ious uncertainties associated with cyber attacks. The need for such strategies becomes particularly

pronounced considering the critical impact that cyber attacks may have on organisations and the of-

ten very limited time to make executive decisions. Hence, risk management within the area of the

cyber security is a considerably delicate task, since the presence of uncertainties raises the incentive

to postpone decisions, and, in turn, the value of waiting, which is often a luxury that cannot be afforded.

In this report, we take into account the serial nature of a cyber attack as well as key underlying

uncertainties, and develop an analytical framework to: i. evaluate the risk exposure of an organisa-

tion; and ii. develop risk metrics that will serve as optimisation objectives for the optimal selection of

mitigation measures in D5.4. Thus, the contribution of our framework is that it extends the traditional

DCF approach beyond a static context in order to demonstrate its application potential within a more

complex cyber security contact that combines asset valuation and risk management.

Specifically, we derive the expected present value of the cost an organisation incurs following a

cyber attack, taking into account the uncertainty in the time an attacker requires to exploit each vul-

nerability of the 5G network. Doing so, we derive analytical expressions for the distribution of the cost

of a cyber attack, and, in turn, we produce risk measures such as the VaR and the CVaR, that can be

used to gauge the level of risk exposure. To demonstrate the novelty of our model, we analyse the

economic implications of a cyber attack by developing a case study based on a 5G network.

Thus, the contribution of the risk assessment framework is that it provides a critical building block

to a decision support tool that will be developed in D5.4. The latter represents the optimisation part of

the analysis, where we develop variations of the set cover and knapsack problem in order to optimise

the set of controls that can be implemented to mitigate the impact of a cyber attack.
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10 APPENDIX

10.1 LIST OF ASSETS

Figure 12: Indicative list of assets.
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10.2 LIST OF VULNERABILITIES

Figure 13: Indicative list of vulnerabilities.
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10.3 PHASE 1

The general expression of the cdf of the PV of K1 is described in (35).

ΘU1
(u1) = P

(
K1e

−ρτ1 ≤ u1
)

= P
(
τ1 ≥

1

ρ
ln

(
K1

u1

))
= 1− P

(
τ1 ≤

1

ρ
ln

(
K1

u1

))
= 1− ΦW1

(
1

ρ
ln

(
K1

u1

))
(35)

Note that (35) allows any assumptions about the distribution of T1. However, for ease of exposition,

we will assume here that T1 ∼ exp(λ1). Thus, the cdf of T1 is ΦT1
(τ1) = 1− exp{λ1}, and, consequently,

the cdf and pdf of the PV of K1 are described in (36) and (37), respectively.

ΘU1(u1) = 1− 1 + e
−λ1ρ ln

(
K1
u1

)
=

(
K1

u1

)−λ1ρ
−1

(36)

θU1
(u1) =

λ1
ρ
K
−λ1ρ
1 · u

λ1
ρ −1
1 (37)

Next, having derived the analytical expression for the distribution of U1, we can proceed with the

derivation of the main moments

µ1 =

∫ K1

0

z1
λ1
ρ
K
−λ1ρ
1 · u

λ1
ρ −1
1 du1 =

λ1
λ1 + ρ

K1 (38)

σ2
1 = E

[
U2
1

]
− E [U1]

2
=

[
λ1

λ1 + 2ρ
−
(

λ1
λ1 + ρ

)2
]
K2

1 (39)

γ1 =
E
[
U3
1

]
− 3µ1σ

2
1 − µ3

1

σ6
1

(40)

δ1 =
E
[
(U1 − µ1)

4
]

[
E
[
(U1 − µ1)

2
]]2 (41)

By definition, VaRξ(X) = −inf{v ∈ R : P(X ≤ v) > ξ} evaluates the left tail of a loss random vari-

able X , while CVaRξ(X) is the expectation of X given that it is less than VaRξ(X). However, since we

are not considering the distribution of the overall profits, but only the distribution of the impact of a

cyber attack, we adopt this general definition of VaR to our context. Specifically, with the closed-from
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expression of ΘU1(u1) as specified in (36), we can obtain the analytical expression of VaR as follows:

VaRξ (U1) = sup {u1 : P (U1 ≥ u1) > ξ}

= sup {u1 : 1− P (U1 ≤ u1) > ξ}

= sup

u1 : 1−
(
u1
K1

)λ1
ρ

> ξ


= sup

{
u1 : K1(1− ξ)−

λ1
ρ < u1

}
= K1(1− ξ)−

λ1
ρ

Based on the expression of VaR, the expression of CVaR is:

CVaRξ(U1) =
1

p

∫ p

0

VaRξ(U1)dq. (42)

10.4 PHASE n

Next, we determine the CDF of Un = kne
−rWn , where Wn = T1 +T2 + · · ·+Tn. For a general distribution

function ΦWn
(wn) we have:

ΘUn(un) = 1− ΦWn

(
1

r
ln

(
kn
un

))
(43)

Depending on the CDF of Wn, we can derive a specific expression for the distribution of the Un. Here,

we assume that each Ti follows an exponential distribution with parameter λi.

Proof of Proposition 3

λ1 6= λ2 6= · · · 6= λn

In this case, Wn ∼ Hypo(λ1, λ2, . . . , λn) and the CDF and PDF of Wn are described in (44) and (45),

respectively.

ΦWn
(wn) =

n∑
i=1

[
1− e−λiwn

]∏
j 6=i

λj
λj − λi

(44)

φWn
(wn) =

n∑
i=1

λie
−λ1wn

∏
j 6=i

λj
λj − λi

(45)
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Hence, the CDF Un is obtained by setting wn = 1
r ln

(
kn
un

)
in (44) and then substituting (44) into (43).

ΘUn(un) = 1−
n∑
i=1

1−
(
un
kn

)λi
r

∏
j 6=i

λj
λj − λi

(46)

θUn(un) =

n∑
i=1

λi
r

(
un
kn

)λi
r −1 1

kn

∏
j 6=i

λj
λj − λi

(47)

λi = λ, ∀i = 1, . . . , n

Now, Wn ∼ Erlang(n, λ), and, therefore, the CDF and PDF are indicated in (49) and (48), respectively.

ΦWn
(wn) = 1−

n−1∑
i=0

1

i!
e−λwn(λwn)i (48)

φWn(wn) = λ2wne
−λwn (49)

The CDF and PDF Un is:

ΘUn(un) = e−λwn
n−1∑
i=0

(λwn)
i

i!
, wn =

1

r
ln

(
kn
un

)
(50)

θUn(un) =
1

(n− 1)!

(
λ

r

)n(
un
kn

)λ
r−1 1

kn

(
ln
kn
un

)n−1
(51)

The mean and variance of the NPV of the arbitrary nth phase is described in (52) and (53), respectively.

Notice that an increase inn lowers the expected NPV of the cost, which reflects the effect of discounting.

µn =

(
λ

λ+ r

)n
kn (52)

σ2
n =

[(
λ

λ+ 2r

)n
−
(

λ

λ+ r

)2n
]
k2n (53)
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