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1 EXECUTIVE SUMMARY

Controlling cyber risk is a critical, albeit notoriously complex task of cyber security management not

only due to the uncertainties associated with a cyber attack and the resulting risk exposure for an or-

ganisation, but also due to the availability of scarce resources for investment in mitigation measures.

In this report, we explore how the optimal set of mitigation measures, a.k.a. controls, may be driven by

different optimisation objectives, in order to subsequently quantifying the risk exposure that each set

of controls entails. Specifically, we first adopt a set covering formulation to determine the least number

of controls required to cover all vulnerabilities. Subsequently, we use a Knapsack mathematical opti-

misation to identify the set of controls that minimise the expected impact of a cyber attack. Note that

the latter approach builds upon D5.3 [2], where we evaluate the cost that a firm incurs as a result of a

cyber security breach that progresses in phases, assuming that both the duration of an attack phase

and the associated cost are random variables. In both the set covering and the Knapsack formulation,

the optimisation is designed to account for various relevant constraints, such as the limited availability

of financial resources and the desired efficacy of the controls. Thus, apart from identifying the opti-

mal set of controls in each case, these models may be used to demonstrate not only how different

objectives can be achieved, but also which approach is more effective in mitigating cyber risk.
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2 INTRODUCTION

2.1 PURPOSE AND SCOPE

Building upon the Asset Pricing and Impact Loss Analysis (APILA) framework of D5.3, this report aims

to demonstrate how the application potential of traditional mathematical programming techniques

may be extended within the context of cyber security to facilitate the selection of mitigation measures

subject to different constraints. Specifically, the scope of D5.4 is to apply optimisation methods based

on the set covering and the knapsack formulation in order to address the following two questions:

i. What is the minimum number of controls that offer a baseline coverage of the network’s vulner-

abilities.

ii. What is the set of controls that minimises the present value (PV) of the impact of a cyberattack.

Note that the first question only utilises information regarding the coverage of the network’s vulnerabil-

ities by different controls and their cost, and, thus, it does not directly address the risk of a cyberattack.

However, its contribution is in providing a point of reference in terms of comparing the residual risk

under different optimisation objectives. Indeed, by gauging the risk reduction following the implemen-

tation of the controls proposed by the set covering problem, we can compare it with the reduction of

risk associated with the second question. The latter utilises the output of the risk assessment frame-

work developed in D5.3 to formulate objective functions that can be optimised to produce a set of

controls that minimise the PV of the impact of a cyberattack. Thus, the scope of D5.4 is to analyse

how the selection of mitigation measures is driven by different optimisation objectives and gauge the

resulting risk exposure in each case in order to derive managerial insights.

2.2 MOTIVATION

Breakthroughs and advancements in the area of computer information systems have improved the

operational efficiency of critical infrastructures, but have also rendered these substantially more vul-

nerable. The risk exposure and financial consequences that cyber attacks entail for an organisation can

be demonstrated through a range of examples. Among the most recent breaches is that at Marriott

that revealed personal details of approximately 5.2 million hotel guests. The breach at Twitter allowed

fraudulent tweets about Bitcoin generating Bitcoin worth more than $100, 000, while the Solarwinds

hack managed to compromise multiple government systems along with many fortune 500 companies,

globally. The latter, also resulted in an 8% fall in the share price of FireEye after it disclosed information
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about the cyber attack1, and is expected to cost cyber insurers $90 million for incident response and

forensic services2.

The aforementioned examples demonstrate how cyber security is a critical defensive manoeuvre

as well as a strategic decision that may increase an organisation’s competitive advantage. Further-

more, they emphasise the increasing need for developing economic models to assess cyber risk and

deriving insights on how to invest in measures to mitigate them. However, while controlling cyber

risk is the cornerstone of information security management, the uncertainties associated with cyber

attacks, the resulting risk exposure, and the availability of scarce resources for investment in mitiga-

tion measures, make it challenging for organisations to assess and control cyber risk. Indeed, while

cyber security models for optimising the selection of mitigation measures have evolved substantially

from standard to multi-objective, bi-level models that facilitate strategic interactions, these have been

developed mainly within a deterministic context that ignores key uncertainties of cyber attacks, and,

consequently, they do not provide a formal assessment of cyber risk.

2.3 RELATION TO OTHER WORK IN THE PROJECT

A diagrammatic overview of the connection of the different tasks within WP5 as well as between WP5

and the general SPIDER platform has already been presented in D5.3 via Figure 1, which is also in-

cluded below for ease of reference. Specifically, the scope of Figure 1 is to indicate: i. how the SPIDER

simulated/emulated infrastructure as well as the SPIDER platform infrastructure provide data to be

utilised within WP5; ii. the nature of the information and the way that this information is passed from

one WP5 module to another; and iii. how the output of WP5 is reported to different SPIDER visualisa-

tion components. Note that, unlike in D5.3, here we highlight T5.4 in order to emphasise the key task

associated with and underlying D5.4.

Furthermore, as T5.3 and T5.4 form part of the methodologies underlying the Cybersecurity In-

vestment Component (CIC) that is developed in T5.5 [3], T5.4 relies on the same input as T5.3. More

specifically, the quantitative analysis of the continuous risk assessment engine (CRAE) in T5.1 [1] re-

ceives input from the SPIDER Simulated/Emulated Infrastructure and provides improved information

on asset values to the CIC. Also, as indicated in Figure 1, the CIC also receives information on attackers,

assets and controls directly from the SPIDER Simulated/Emulated Infrastructure. Thus, together with

the information from T5.1, the CIC calls the risk assessment and optimisation models developed in
1https://www.cnbc.com/2020/12/08/fireeye-shares-fall-after-security-company-discloses-cyberattack.html
2https://www.isaca.org/resources/news-and-trends/industry-news/2020/top-cyberattacks-of-2020-and-how-to-b

uild-cyberresiliency
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T5.3 and T5.4, respectively.

Also, note that T5.4 builds upon and extends T5.3 by integrating the output of the APILA frame-

work within models for optimal selection of mitigation measures. Hence, the required input for T5.4

is provided partly by T5.3, in the form of the risk metrics to be optimised. However, T5.4 also requires

information regarding controls, their efficacies, and limitations of financial resources in relation to the

budget constraint. This input is not required in T5.3, as its scope does not extend beyond the assess-

ment of cyber risk. Both the set of controls and the associated efficacies are provided the SPIDER

platform, while constraints are provided by the SPIDER visualisation components.

Figure 1: WP5 reference architecture.
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2.4 STRUCTURE OF THE DOCUMENT

The report is organised as follows: In Section 3, we present the methodology we follow in order to

produce D5.4, and, in Section 4, we provide an overview of the key novelties of this deliverable. Next,

Section 5 discusses some related work in order to emphasise the contribution of D5.4 relative to the

existing literature, while Section 6 gives a brief overview of the work developed in D5.4.

The control optimisation framework is presented in Section 7, where we begin with a description

of the assumptions and the notation, and then proceed with a detailed treatment of the methodology

in Section 8. For ease of exposition, we present the key elements of the APILA framework in order

maintain a link with D5.3 and to facilitate a smooth transition to the development of the optimisation

models.

The first optimisation model is presented in Section 8.2.1, where we cast the optimal selection of

mitigation measures as a set covering problem. The set covering problem is a representative combina-

torial optimization problem with many practical applications. Here, we adopt this formulation in order

to determine the minimum number of controls that offer a baseline coverage of the network’s vul-

nerabilities subject to efficacies and budget constraints. The second optimisation model is presented

in Section 8.2.2, where we adopt a Knapsack formulation in order to address the question of how to

select a subset of controls in order to minimise the expected PV of the impact of a cyber attack, which

has already been determined in D5.3.

A comprehensive demonstration of the optimisation models will be presented upon completion

of their integration within the CIC. Nevertheless, a brief overview is presented in Section 9 in terms

of: i. a sample 5G network topology that is used to illustrate possible paths of the propagation of an

attack, and, in turn, the 5G context within which the optimisation models will be carried out; and ii. the

relevant input in terms of the list of available controls for a given set of vulnerabilities. Finally, Section

10 concludes the report by providing a summary of the key finding as well as an outline of the next

steps in relation to the integration of D5.4 within the CIC.
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3 METHODOLOGY FOLLOWED TO PRODUCE THIS DELIVERABLE

3.1 DATA COLLECTION

Note that, since D5.4 builds upon the APILA framework developed in D5.3, there is a substantial overlap

in terms of the data utilised in each case. Therefore, detailed references to the data utilised in D5.3 will

be omitted in order to emphasise the input required for the risk control framework of D5.4, and we

begin the description of the methodology with an overview of the data on which it is based. The latter,

can be classified into two main categories, i.e. qualitative and quantitative data.

3.1.1 QUALITATIVE DATA

Qualitative data pertain to various network characteristics, such as the assets of the network and the

vulnerabilities within each asset. In D5.3, we make use of such data in order to produce risk metrics that

can now be utilised within D5.4. In addition, since the objective here is to develop a decision-support

framework that facilitates the selection of mitigation measures, a critical input is a comprehensive

description of mitigation measures (controls) and how they map to different vulnerabilities. Security

controls are safeguards or countermeasures to avoid, detect, counteract, or minimize security risks to

physical property, information, computer systems, or other assets. In the field of information security,

such controls protect the confidentiality, integrity and availability of information.3

3.1.2 QUANTITATIVE DATA

The key functionality of the risk control framework is to propose an optimal set of mitigation measures,

in the light of scarce financial resources, taking into account their efficacy. Consequently, this requires

information about the efficacy of each mitigation measure and the available budget. The efficacy of a

cyber security control is defined as the probability of preventing the event that an attack is successful

in compromising a vulnerability. Consequently, the efficacy of a given control is a number within the

interval [0, 1], although in many cases the implementation of a control means that a vulnerability is

patched, i.e. protected with certainty. Data on the efficacies as well as their cost and the available

budget will be provided by the SPIDER Simulated/Emulated infrastructure.
3https://en.wikipedia.org/wiki/Security controls
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3.2 RISK CONTROL FRAMEWORK

The goal of the risk control framework is to provide decision support regarding the selection of cy-

ber security controls constrained by a financial budget. The objective of this selection is to find the

combination of controls (also referred to as security package) that consists of: i. the minimum num-

ber of controls required to patch all vulnerabilities (Approach 1); and ii the controls that minimise the

expected PV of the impact (Approach 2). Regarding Approach 1, the security package is derived as a

solution to a set covering problem in order to account for the potential interaction among security

packages that may overlap in terms of the vulnerabilities they cover. Regarding Approach 2, we use

the risk assessment part of D5.3 along with the improvement of the expected impact when deploying

security packages. We then derive the security package, which maximises the improvement of the ex-

pected PV of the impact subject to a financial budget. The same function may also take into account

the cost of each security package, which is subtracted by the improvement. In this way, this framework

optimises the return on security investment, which is defined as the ratio (benefit of security - cost of

security) / cost of security [9].
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4 INNOVATION

By extending the application of standard optimisation methods, namely set covering and knapsack,

within the area of cyber security, the novelty of D5.4 is twofold: first, by adopting a set covering for-

mulation, we obtain a benchmark solution in terms of an optimal set of controls that offers a baseline

coverage of the network’s vulnerabilities. Second, we adopt a knapsack formulation that directly in-

tegrates the expected PV of the impact of a cyber attack obtained via the APILA framework of D5.3.

Specifically, the latter approach integrates the discounted cash flow (DCF) method for assessing the cy-

ber risk associated with a multi-phase attack within a model for optimising the selection of cyber risk

mitigation measures. Consequently, key novel aspects of the APILA framework, i.e. uncertainties re-

garding the impact and the duration of each phase of a cyber attack, are accounted for and integrated

within an optimisation model, which, in turn, facilitates more informed decisions for investment in

cyber security controls. Additionally, by developing two optimisation models for optimal selection of

cyber security controls, we enable a comparison of different optimisation objectives in terms of the

reduction in cyber risk following the implementation of the solutions they propose.

Furthermore, the novelty of D5.4 is that it facilitates important directions for future work. Indeed,

the potential to utilise different risk metrics within the proposed optimisation models enables the de-

velopment of a decision-support frameworks that account for risk preferences. In turn, this implies that

the insights obtained via these optimisation models can reflect the implications of attitudes towards

risk for investment in cyber security. Hence, although we demonstrate here the application potential

of optimisation models in terms of minimising the expected PV of the impact of a cyber attack, other

risk metrics could also be implemented within these models. Thus, the risk control framework of D5.3

is suitable for both risk-neutral and risk-averse decision makers.

Also, the optimisation methods proposed in D5.4 may be adopted within a framework that consid-

ers the strategic aspect of cyber security interactions. The objective would be to capture the interaction

between the defender and the attacker as a non-cooperative game to determine the best responses

against strategic attackers. From an application point of view, future work could extend the analysis

to obtain recommendations against known threat actors by including adversarial information from

CAPEC and MITRE ATT&CK framework.

Finally, within the context of public policy, governments advise organisations to get cyber secu-

rity compliance certifications to demonstrate compliance with prescribed guidelines. For example, the

UK government demands organisations to get certified for Cyber Essentials4, which is a government-
4https://www.ncsc.gov.uk/cyberessentials/overview
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backed scheme aimed to protect organisations from a range of most common cyber attacks. To be

certified, organisations have to satisfy a list of requirements that cover five technical control themes:

firewall, secure configuration, user access control, malware protection, and security update manage-

ment. The set covering approach could be a comparable method used to identify controls to meet

these requirements. However, this is a basic method that provides ideas on how to invest in cyber se-

curity and does not deal with cyber risk minimisation. On the other hand, the Knapsack optimisation

method could be used to overcome the inefficacy of the set covering method to identify controls that

minimise cyber risk.
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5 BASELINE KNOWLEDGE

A strand of the cyber security economics literature draws on the theory of investment and project val-

uation under uncertainty [12, 8], with the main objective to derive the expected value of an investment

in cyber security controls along with the investment threshold price and the probability of investment

within a given time horizon [14]. This methodology, also known as real options, addresses the prob-

lem of investment under uncertainty while reflecting the value from embedded managerial discretion.

For example, Gordon et al. [20] extend the framework of [19] by showing that information-sharing

regarding vulnerabilities can decrease uncertainty about risks, and, in turn, the value of deferment op-

tions. More recently, Benaroch [8] develop a real options model to cast the cyber security investment

problem as one of selecting a subset of uncertainty-reducing mitigation measures, whose availability

is controlled by decision-makers and their size is log-normally distributed. The novelty of his work is to

improve the efficiency of cyber security investments by balancing the costs of mitigation against their

incremental uncertainty-reduction impact on cyber security loss expectancy. In the same line of work,

Chronopoulos et al. [10] analyse how uncertainty over the cost of a cyber attack and the arrival of a

control impacts the optimal time of investment in cyber security.

Although the optimal time of investment in cyber security controls is an important problem, es-

pecially considering the intensity and irreversibility of this capital expenditure as well as the various

underlying uncertainties, the main limitation of the aforementioned literature is two-fold: First, deci-

sions for mitigation of threats and protection of a network must be taken promptly, and, therefore, the

value of waiting, which real options theory emphasises, is not as pronounced as it is in other indus-

tries, e.g. pharmaceutical, research and development, and energy. Second, real options models can be

used to derive the expected value of an investment opportunity along with the investment threshold

price, but they do not quantify the degree to which risk is hedged. The latter problem often fits within

a security planning process, in terms of optimal selection of countermeasures [27, 28]. However, such

models are typically deterministic, as they ignore key uncertainties underlying the nature of attacks for

which the selection of countermeasures is designed [15, 22]. Consequently, the implications of uncer-

tainty underlying key aspects of a cyber attack for the financial exposure of an organisation’s assets

and the choice of mitigation measures remains an important open research question.

Examples of models for optimal selection of cyber security controls include Leskovec et al. [25], who

consider the general problem of detecting outbreaks in networks and demonstrate the application po-

tential of their optimization model within the context of detection of contaminants or malicious ideas

in a physical or social network, respectively. Also, Zhuo and Solak [39] propose a stochastic program-
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ming model to optimize a firm’s cybersecurity budget in an investment portfolio taking into account the

uncertainty in the effectiveness of the countermeasures. The problem of optimal policy development

for cyber vulnerability maintenance is presented in Afful-Dadzie and Allen [5], who propose multiple

Markov decision processes to tackle data scarcity when developing IT network security maintenance

policies. Furthermore, Nagurney et al. [26] propose a supply chain game theory framework consist-

ing of retailers and consumers for managing vulnerability in electronic Internet transactions. While

retailers compete noncooperatively in order to maximize their expected profits by determining their

optimal product transactions as well as cybersecurity investments in the presence of network vulner-

ability, consumers reveal their preferences via demand price functions that depend on the product

demand and on the average level of security in the supply chain network.

In the same line of work, Smeraldi and Malacaria [37] investigate the challenge of how to spend a

security budget optimally and propose methods, such as optimisation algorithms, combinatorial opti-

misation and classical knapsack problem, that can deal with overlapping safeguards that exhibit non-

linear relationships. Similarly, Fielder et al. [15] propose a methodology for investing in CIS controls,

considering a single value for a vulnerability, and a number of implementation levels for each control.

The latter represent the information security levels proposed in the seminal work on the economics

of information security by Gordon and Loeb [18]. Also, [28] extends the methodology proposed in [15]

to obtain an optimal set of controls to protect various employee groups of a healthcare organisation

from social engineering attacks.

Additionally, [38] cast the problem of optimal selection of controls as a set covering problem, whereby

they first solve a deterministic version to analyse the incentive to implement complementary mitiga-

tions to reduce supply chain vulnerabilities. Subsequently, they extend the deterministic version to

allow for limitations on the choice as well as uncertainty over the efficacy of the different controls.

Building upon [6], [22] develop a game-theoretic framework, whereby the defender chooses a security

plan seeking to minimise its security risk, while the attacker aims to maximise it via the most effective

attack path. This is modelled as a min-max optimisation problem, where the maximisation problem

is the attacker’s, and the minimisation problem is the defender’s, keeping in mind the reaction of the

attacker.

A limitation of the aforementioned optimisation models is that they have been developed mainly

within a deterministic context that ignores key uncertainties of cyber attacks, and, as a result, they do

not provide a formal assessment of cyber risk. In finance, the risk exposure of a project is often mea-

sured by its Value at Risk (VaR), which is the minimum project value for a given confidence level during

a specified time horizon, and by its Conditional VaR (CVaR), which is the expected value of the project

Sunday 31st October, 2021 Page 20 of 39



D5.4: An empirical decision support framework
for econometric analysis of cyber risk and investment

given that it is less than the VaR. Such risk measures have been recently applied to the cyber world and

examples of empirical models that utilise risk measures, such as VaR and CVaR, for assessing risk and

for analysing investment decisions in cyber security controls include [16], who propose an approach

to estimate both the VaR and the Tail VaR using information on data breaches obtained from [31].

Also, Ekelund and Iskoujina [13] demonstrate how to find the optimal investment level in protecting

an organisation’s assets. Their framework combines theory and empirical findings, and proposes a new

approach to determining optimal security investment levels. Via a case study on an international finan-

cial organisation, they demonstrate that the optimal security investment levels can be found through

computer simulation of VaR using historical incident data. Specifically, by combining various scenarios,

they plot the convex graph of the risk cost function, whereby the minimum of the graph indicates the

optimal invest level for an asset. Other examples in the same line of work include [24, 29, 30, 32, 35].

Despite their novelty and contribution, a limitation of the aforementioned risk assessment and

optimisation models is that they overlook the serial nature of a cyber attack and key uncertainties, such

as the time it takes to exploit a vulnerability and the cost that the system incurs once a vulnerability is

compromised. Hence, to assist in the anticipation and control of the financial impact of cyber attacks

[33, 17], our work builds upon the literature on the valuation of serial projects to develop quantification

tools for assessing the risk associated with a security breach that progresses in phases. For example,

Creemers [11] studies the net present value (NPV) of a serial project, whereby a cash flow may be

incurred at the start of each phase, a payoff is obtained at the end of the project, while the duration

of each phase is a random variable with a general distribution function. The novelty of this work is

that it derives an exact closed-form expression for the moments of the NPV of a project as well as a

closed-form approximation of the distribution of the project’s NPV. Therefore, we adopt and extend

[11] within the context of cyber security in order to derive risk measures and quantify the risk exposure

that a security breach entails so that we can subsequently utilise the risk measure within objective

functions for optimal selection of mitigation measures.

Specifically, having derived the analytical expressions for the distribution of the PV of the impact

of a cyber attack for each one of its phases, we will now develop methods for optimising the selection

of controls. The latter is achieved by minimising the PV of the expected impact, yet the methodology

we develop could be adopted to optimise any risk measure that can be derived from the distribution

of the PV, e.g. VaR and CVaR. By casting the optimal selection of mitigation measures as the solution

to a Knapsack and a set covering problem, we develop a framework for analysing the following set of

testable hypothesis:
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i. The Knapsack formulation provides solutions that not only are more affordable but also entail

lower risk than those proposed by the set covering formulation.

ii. Greater investment intensity does not necessarily result in an analogous reduction of risk, which,

in turn, implies that the rate of risk reduction decreases beyond a certain level of investment

intensity.

iii. The VaR corresponding to the solutions obtained via the Knapsack formulation is lower com-

pared to the VaR corresponding to the solutions obtained via the Set Covering formulation. This

would further emphasise how the former approach is more suitable for providing solutions for

controlling risk.

Thus, recommendations from the optimisation models proposed in this report can assist organisa-

tions to determine effective cyber security strategies aligned with the guidelines advocated by the UK

government to protect small businesses against cyber attacks.
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6 WORK DEVELOPED

The work developed in this report is twofold. First, we develop a framework for integrating the risk

assessment methodology of D5.3 within objective functions to be optimised with respect to the choice

of mitigation measures. Second, we develop two optimisation models for selection of mitigation mea-

sures in order to analyse and compare different objectives in terms of their respective proposed miti-

gation measures and the resulting risk exposure for the network. Note that via the integration of the

risk assessment methodology of D5.3, the selection of mitigation measures is driven by objectives

that reflect various critical uncertainties underlying a cyber attack. Consequently, the novelty of this

risk-based approach to mitigating cyber risk is that it has the potential to facilitate optimal investment

decisions that account for attitudes towards risk.

Additionally, in terms of the optimisation models themselves, the work developed in this report con-

sists of two main parts that reflect the models for optimal selection of mitigation measures. Specifically,

we develop two models in order to analyse and compare the reduction of cyber risk under different

optimisation objectives.

i. The first model is based on a set covering formulation, and its objective is to determine the min-

imum number of controls that offer a baseline coverage of the network’s vulnerabilities based on

a budget constraint and the desired level of efficacy resulting from each patch.

ii. The second model is based on the Knapsack problem, which is a problem in combinatorial opti-

mization. In its general version, given a set of items, each with a weight and a value, we want to

determine the number of each item to include in a collection so that the total weight is less than

or equal to a given limit and the total value is as large as possible.
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7 CONTROL OPTIMISATION FRAMEWORK

7.1 SYSTEM MODEL

In this section, we present a summary of the framework for controlling cyber risk by adopting a math-

ematical programming approach that couples the risk assessment framework of D5.3 with optimisa-

tion of mitigation measures. In summary, this section discusses: i. the underlying system model with

an organisation that wishes to protect its systems (Defender) and hackers who target the organisation

(Attacker) and ii. how patching a percentage of these vulnerabilities, given a limited budget, leads to

the challenge of optimally allocating cyber security controls, which may naturally overlap in terms of

vulnerabilities they patch. We assume that the Defender’s infrastructure consists of a number of sys-

tems and networks, referred to as assets, which the Defender aims to protect from the Attacker. Each

asset i ∈ N has a set of vulnerabilities Vi = {vi1, vi2, . . . , vimi} that the Attacker may exploit.

7.2 EXPECTED IMPACT

The objective function that will be optimised in Section 8.2.2 builds upon the expected PV of the im-

pact of the cyber attack, as this is determined in [2]. Recall that the expected PV of the impact from

exploitation of asset i is denoted by Ki, which is defined in (1).

Ki = Ai · 〈Ri, Si〉. (1)

More specifically,Ai denotes the value of asset i, whileRi = (ri1, ri2, . . . , rimi) andSi = (si1, si2, . . . , simi).

Note that rij is the likelihood of the Attacker attempting to exploit vulnerability vij and expresses the

degree of attractiveness of a vulnerability to the Attacker, while sij is the probability of the same vul-

nerability being successfully breached. Thus, the likelihood of occurrence of an attack is expressed as

〈Ri, Si〉, i.e. the inner product between Ri and Si [34].

7.3 PRESENT VALUE OF THE EXPECTED IMPACT

For an attack phase i, Ti represents the time required to exploit a vulnerability vij in Vi, and we refer

to this as the hardness of exploiting a vulnerability. We assume that Ti follows a general distribution

function denoted by ΨTi(·), as shown in Figure 2. Assuming that an attack consists of a number of

phases, each of them compromising an asset, we compute the duration of the attack (Wk) as the sum

of the exploitation times required to compromise an asset in each phase, i.e. Wk =
∑k
i=1 Ti, 1 ≤ k ≤ n.
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0 W1 W2 Wn−1 Wn

T1 ∼ ΨT1(τ1) T2 ∼ ΨT2(τ2) Tn ∼ ΨTn(τn). . .

K1 K2 K3 Kn

Figure 2: Sequential, multi-phase security breach.

To realise the expected impact that can materialise in the future, we determine the distribution of

the PV of the expected impact associated with the attack. The aggregated expected impact (Zn) over n

attack phases in described in (2), where Ui denotes the PV of Ki, ρ denotes the discount rate, and Wi

denotes the duration of the attack until phase i.

Zn = K1e
−ρW1︸ ︷︷ ︸
U1

+K2e
−ρW2︸ ︷︷ ︸
U2

+ · · ·+Kne
−ρWn︸ ︷︷ ︸
Un

, (2)

As discussed in [2], the PV is used to introduce the concept of discounting into the calculation of the

current value of the impact of a cyber attack, thereby supporting effective decision-making [11]. From

a modelling standpoint, the contribution of this is to facilitate the development of risk measures that

can be used to gauge the financial risk exposure of the Defender [21], and, subsequently, to enable

the development of optimisation objectives for selections of mitigation measures.

7.4 CYBER RISK CONTROL

After gauging the potential risk exposure associated with each vulnerability, the risk control framework

subsequently focuses on optimising the coverage of vulnerabilities in each asset by determining the

appropriate Security Package. The latter refers to the set of controls that minimise the expected PV of

the impact from an attack. This is done by patching asset vulnerabilities, thereby reducing an asset’s

attack surface or by increasing the effort required in successfully breaching the asset. The risk control

framework specifically considers that the implementation of a control will mitigate the expected impact

of an attack by reducing the probability of the latter being successful. We denote by C = {C1, C2, . . . , Cg}

the set of available controls and by Eijl the efficacy of control Cl against vulnerability vij , where l ∈

{1, 2, . . . , g}. Intuitively, Eijl reflects the degree of protection offered by control Cl for a vulnerability

vij . The effect of each control is formulated as Ŝi = Si · εj , where εj reflects the residual risk, i.e.

εj =
∏
l (1− Eijl).
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As the implementation of cyber security controls is not cost-free, the associated direct and indi-

rect costs must be considered by the Defender. According to [9], the former refers to the acquisition,

deployment, and maintenance costs of this control, while the latter can be anything else that inflicts

loss to the Defender, such as slowing down essential processes due to incompatibility of controls and

training employees to get acquainted with the new controls. For the sake of brevity, we assume that

each control Cl comes with a set of costs Ξl associated with each level of implementation, inclusive

of the direct and indirect costs. Table 1 presents a summary of the notation used in this report, and,

specifically, complements the notation introduced in D5.3 with the notation relevant to the optimisa-

tion models. Note also that, although the optimisation models proposed in Section 8.2 are designed to

account for the level of implementation of a given control, their application may be adjusted in simpler

contexts, where these features may not be pertinent due to availability of data.

Symbol Description
i phase of attack or an asset (i = 1, 2, . . . , n)
Vi set of vulnerabilities in asset i, Vi = {vi1, vi2, . . . , vimi}
C set of cyber security controls, C = {C1, C2, . . . , Cg}
Ll set of levels of control Cl, Ll = {L1, L2, . . . , Lh}, where l = 1, 2, . . . , g
Ξl set of cost of each level of control Cl, Ξl = {ξl1, ξl2, · · · , ξlh}
Eijl set of efficacy of each level of control Cl on vulnerability vij , Eijl = {Eijl1, Eijl2, · · · , Eijlh}
vij vulnerability within asset i (j = 1, 2, . . . ,mi)
rij Probability of vulnerability vij being targeted (attack occurrence)
sij Probability of vulnerability vij being compromised when attacked (success rate)
xl` Indicates whether level L`, ` = 1, 2, . . . , h, of control Cl is selected
yjl Indicates whether vulnerability vij is covered by Cl
Ai Value of asset i
Ti Time required to exploit a weakness in asset i
λi Rate parameter for attack phase i
Wk Total duration of the attack until phase k,

∑k
i=1 Ti where 1 ≤ k ≤ n

Ki Expected impact from exploiting asset i
Ui PV of the expected impact for attack phase i
Zn Aggregated expected impact for the first n attack phases,

∑k
i=1 Ui where 1 ≤ k ≤ n

Table 1: List of symbols.
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8 ANALYSIS

8.1 RISK ASSESSMENT

For ease of exposition and to facilitate a smooth transition to the risk control framework, which utilises

and builds upon the risk metrics developed in D5.3, we begin with a brief overview of the APILA frame-

work. Note that the scope of the APILA framework is to assess the PV of the expected impact from a

breach, and, to achieve this, we perform a phase-wise analysis of a cyber attack to determine: i. the

distribution of the PV of the expected impact at each phase i = 1, 2, . . . , n; ii. the distribution of the PV

of the aggregated expected impact (Zn) over n phases; and, iii. risk measures to gauge the financial

risk exposure following the multi-staged attack. The main outcome of the APILA framework can be

summarised via the result of the arbitrary n-th phase. Recall that Wn ∼ Hypo(λ1, λ2, . . . , λn) and the

cdf and pdf of Wn is described in (3) and (4), respectively [36].

ΦWn
(wn) = 1−

n∑
i=1

e−λiwn
∏
j 6=i

λj
λj − λi

(3)

φWn
(wn) =

n∑
i=1

λie
−λ1wn

∏
j 6=i

λj
λj − λi

(4)

Next, the cdf and pdf of Un is described in (5) and (6), respectively.

ΘUn(un) =

n∑
i=1

(
un
Kn

)λi
ρ ∏
j 6=i

λj
λj − λi

(5)

θUn(un) =

n∑
i=1

1

ρKn

(
un
Kn

)λi
ρ ∏
j 6=i

λj
λj − λi

(6)

Having derived the distribution of Un, we can now derive a wide range of risk measures to gauge the

risk exposure associated with this arbitrary attack phase. In (7), we indicate the analytical expression

of the mean, which we will use to formulate the optimisation objective.

E[Un] = Kn

n∑
i=1

λi
λi + ρ

∏
j 6=i

λj
λj − λi

(7)

Note also that since we have already derived the distribution of the impact for each phase, as expressed

by the mean of present values Ui for all attack phases, the expected PV of Zn is given by (8).

Zn =

n∑
i=1

Ui ⇒ E[Zn] =

n∑
i=1

E[Ui] =

n∑
g=1

Kg

g∑
i=1

λi
λi + ρ

∏
j 6=i

λj
λj − λi

(8)
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8.2 RISK CONTROL

The optimisation models developed in T5.4 aim to provide decision support regarding the selection

of cyber controls subject to different constraints, e.g. budget or efficacy constraints. Specifically, the

objective of this selection is to find:

i. the minimum number of controls required to patch all vulnerabilities or

ii. the controls that reduce the expected PV of the impact optimally.

The first objective is addressed by adopting a set covering formulation, which also accounts for the

potential interaction among security packages that may overlap in terms of the vulnerabilities they

cover. For the second objective, we adopt a knapsack formulation that integrates the risk assessment

part of the APILA framework developed in D5.3 together with the improvement of the expected impact

following the implementation of security packages. Subsequently, we derive the security package for

which the improvement of the expected PV of the impact subject to a financial budget is maximised.

8.2.1 SET COVERING PROBLEM

Here, we cast the problem of optimal selection of mitigation measures as a set covering problem [7],

which is a classical question in combinatorics, computer science, operations research, and complexity

theory. In its basic implementation, it involves a set of elements U = {1, 2, 3, . . . ,M} and a collection of

subsets Sn, n ∈ N, whose union equals U . The objective of the set covering problem is to identify the

smallest sub-collection of subsets Sn, so that their union equals U . A basic illustration of this problem

is provided in Figure 3, where each node denotes an element of U and each block represents a subset

Sn of U . Note that this reflect the basic implementation of this problem, which may be further refined

depending on the intersection of the different subsets and the presence of constraints.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 3: Set cover problem.
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In the area of cyber security, the objective is to determine the minimum number of controls that offer

a baseline coverage of the network’s vulnerabilities. The formulation of the problem may also account

for a budget constraint and the desired level of efficacy resulting from each patch. In terms of context,

each node in Figure 4 represents a specific vulnerability and the set of all vulnerabilities is denoted by

U . However, as in D5.3, we assume that the total number of vulnerabilities within a network can be

expressed in terms of each asset. Therefore, we denote by Vi the subset of vulnerabilities correspond-

ing to asset i = 1, 2, . . . , n. Also, we denote the set of controls by C = {C1, C2, . . . , Cg} and assume that

each control can protect a given subset of vulnerabilities at least partially or even offer protection that

extends to another subset of vulnerabilities.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

V1 V2 V3

C1 C2

C3

C4

Figure 4: Cybersecurity set cover problem.

This optimisation is described in (9), where xl` is a binary variable indicating whether a specific level

` of a security control Cl is applied. Constraint (10) ensures that each vulnerability is covered by at

least one control, while (11) is the budget constraint. Finally, constraint (12) ensures that the choice of

controls offers a minimum coverage of all vulnerabilities at a desired level of efficacy, ê.

min

g∑
l=1

xl` (9)

s.t.
∑

l:Eijl`>0

xl` ≥ 1, xl` ∈ {0, 1}, ∀i, j ∈ N (10)

g∑
l=1

xl`ξl` ≤ B (11)

Eijl` > ê, ∀i, j ∈ N, ê ∈ (0, 1) (12)

To facilitate the implementation of the set covering optimisation model, we include below the rel-
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evant algorithm. Note that Approach 1 is appropriate when the underlying controls are related to

patching vulnerabilities, as the degree of their effectiveness is 1, meaning that either the vulnerability

is patched or not. In its basic implementation (Algorithm 1), the set covering problem does not ac-

count for the expected cost of the security breach. Indeed, the solution obtained via (9)-(12) ensures

the minimisation of the number of controls, but does not consider whether the proposed controls

minimise the expected impact of the attack or how they affect the associated risk. Furthermore, when

we study preventative controls (e.g. firewalls), we must take into account their degree of effectiveness

(henceforth referred to as Control Efficacy), of control against a vulnerability.

In a quantitative approach, the control efficacy falls within the interval (0, 1). Algorithm 2 presents

the set covering implementation with cost and control efficacy constraints. As stated in the formulation

of the problem, the constraints affect the choice of controls. The Defender has a fixed Budget that can

be utilised for implementing controls. A control is selected based on the number of vulnerabilities it

covers and its cost. The selection is aimed at maximising the vulnerability coverage given the budget

constraint. The selection process is terminated when: i. Budget is depleted; ii. there is no more controls

to select. The only difference between Algorithm 1 and Algorithm 2 is the consideration of the control

efficacy in line 4 which allows the selection of controls with efficacy of at least ê.

Algorithm 1: Set Cover Problem with
Cost Constraint
Input: Vi, C,Ξl
Output: Minimum set of controls within

the budget
1 Function SetCoverCost(Vi, C,Ξl):
2 for Cl in C do
3 price← ξl`/len(Cl ∩ Vi)
4 if price < cost then
5 cost← price

6 cover ← Cl

7 return (cover, cost)
8 while len(Vi) ! = 0 and Budget ! = 0 do
9 (cover, cost)← SetCoverCost(Vi, C,Ξl)
10 Vi ← Vi − cover
11 Budget← Budget− cost

Algorithm 2: Set Cover Problem with Cost
and Control Efficacy Constraints
Input: Vi, C,Ξl, Eijl, ê
Output: Minimum set of controls with budget

and efficacy bound
1 Function SetCoverEfficacy(Vi, C,Ξl, Eijl, ê):
2 for Cl in C do
3 price← ξl`/len(Cl ∩ V)

4 if price < cost and Eijl` > ê then
5 cost← price

6 cover ← Cl

7 return (cover, cost)
8 while len(Vi) ! = 0 and Budget ! = 0 do
9 (cover, cost)← SetCoverEfficacy(Vi, C,Ξl)
10 Vi ← Vi − cover
11 Budget← Budget− cost
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8.2.2 KNAPSACK FORMULATION

Unlike Section 8.2.1, the objective here is to select the controls to invest in so that the expected PV

of the impact, as expressed in (8), is minimised. The challenge of optimal budget allocation in cyber

security can be addressed through combinatorial optimisation [15]. Besides minimising the expected

value of a security breach, any rational Defender would explore ways to minimise the investments in

security controls. Based on the selection of a control at a particular level, indicated through xl` ∈ {0, 1},

the probability of exposure can be expressed as εj =
∏
l∈C,`∈Ll (1− xl`Eijl`). Notice how εj is a strictly

decreasing function of xl`, thereby indicating that the inclusion of a control will reduce the likelihood

of exposure. T5.4 uses 0-1 Knapsack to obtain the optimal security package, which minimises the PV

of the expected impact of a cyber attack given a budget constraint. Thus, T5.4 solves the following

Knapsack problem:

max
~x

min
E[Zi]

n∑
i=1

{{ g∏
l=1

h∏
`=1

(1− xl`Eijl`)
}
· E[Zi]

}
, ∀i, j ∈ N (13)

s.t.

g∑
l=1

h∑
`=1

xl`ξl` ≤ B (14)

h∑
`=1

xl` = 1, xl` ∈ {0, 1}, ∀l = 1, · · · , g. (15)

To facilitate the integration of the Knapsack optimisation model within the CIC, an outline of the im-

plementation steps is indicated in Algorithm 3. Note that the optimal efficacy matrix O is constructed

iteratively for all the cost values within the Budget, and for each value the problem is solved consid-

ering all the available levels of control within that cost. The optimal aggregated efficacy value O[l, cost]

depends on the control level selected for the i-th cost. For a detailed analysis of 0-1 Knapsack optimi-

sation using dynamic programming refer to [23].

Algorithm 3: Dynamic Programming based 0-1 Knapsack Optimisation
Input: Vi, C,Ll,Ξl, Eijl
Output: Optimal set of controls and total cost

1 Function KnapsackOptimisation(Vi, C,Ll,Ξl, Eijl):
2 for Cl in C do
3 for cost in Budget do
4 O[Cl, cost]← O[Cl − 1, cost]

5 for ` in Ll do
6 if cost ≥ ξl` then
7 O[Cl, cost]← max{O[Cl, cost], (O[Cl − 1, cost− ξl`] + (1− Eijl`)}
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9 APPLICATION TO 5G NETWORKS

A detailed demonstration of D5.4 will be presented once its integration within the CIC is complete.

Hence, here we provide a high-level overview of the key steps underlying the demonstration of D5.4,

in a way that also illustrates the connection to the APILA framework.

i. The optimisation begins with the estimation of the impact of a cyber attack based on a sample

network topology. As in D5.3, we consider a 5G network that consists of three assets, each with

two vulnerabilities, and a possible propagation of a cyber attack across the different vulnerabili-

ties is illustrated via Figure 5. Although this is a partial view of a 5G network, different variations

may be produced via the more general illustration of network of assets indicated in Figure 11.

Figure 5: Attack graph representing the attacker actions in a vulnerable artificial 5G infrastructure.

ii. Next, we continue by considering how the selection of controls can be carried out to address the

objectives presented in Section 8.2. The controls that may be utilised to safeguard the vulnera-

bilities indicated in the above attack graph are described in Table 9.

Table 2: Controls and efficacies.
Vulnerability Control

V1 Privilege escalation to root via ”sudoedit -s” (kernel oriented) C1 Update ’sudo’ to 1.9.8p2
V2 Privilege escalation through bpf verifier (kernel oriented) C2 Apply Linux Kernel 5.6.1
V3 Docker escape using waitid function (docker bypass) C3
V4 Remote code execution using OpenSLP (hypervisor takeover from ex-

ternal entity) (host to guest)
C4 Upgrade VMWareESXI to 7.0

V5 EPYC escape (guest to host escape for KVM) C5 Apply Linux Kernel 5.11.12
V6 Routing VNF - VyOS Privilege escalation via sudo pppd for operator

users
C6 Patch VyOS to 1.1.9

V7 ”Attacking the SDN Interface of an OSS - SQL injection in the component
database(SQLite) without authenticating to the controller or SDNInter-
faceapp”

C7

V8 WiFi - dictionary attack C8
– use WPA→ low mitigation
– use WPA and complex password →

medium mitigation
– use WPA and complex password and ro-

tating policy→ high mitigation (not full)

V9 Remote Code Execution C9 Update to blazar-dashboard to 6.0
V10 RRC IMSI catcher C10
V11 UE Denial Service (OpenLTE) C11
V12 SBA null policy C12 Deactivate Null Policies
V13 SBA key retrival (non integrity) C13
V14 Unencrypted PWS C14
V15 SQL Injection, RFI,LFI C15 Install WAF
V16 weak credentials, bruteforce attack C16 Enforce corporate policies fo strong credentials
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10 CONCLUSIONS

Efficient cyber security risk management relies on managerial strategies that are responsive to var-

ious uncertainties associated with cyber attacks. The need for such strategies becomes particularly

pronounced considering the critical impact cyber attacks may have on organisations and the limited

time to make executive decisions. Hence, risk management within the area of cyber security is a con-

siderably delicate task. The presence of uncertainties raises the incentive to postpone decisions and,

in turn, the value of waiting, which is often a luxury that cannot be afforded. In this report, we built

upon D5.3, where we take into account the serial nature of the cyber attack and the uncertainty in the

time required to exploit a vulnerability and develop a decision-support framework to evaluate the risk

exposure of an organisation, and propose an optimal set of mitigation measures. This framework is

designed to provide insights to the following three testable hypothesis.

i. The Knapsack optimisation methodology not only provides solutions that entail greater reduction

of expected impact and lower cost when compared to the solutions of the set covering approach.

This means that, by implementing the suggested solution, we achieve a better reduction of ex-

pected impact and better chances to gain a positive return on the security investment.

ii. Investing more in security does not necessarily lead to a better reduction of risk. This would com-

ply with the acclaimed Gordon-Loeb [18], who highlight that the rate of risk reduction decreases

after a point of security investment. With the decreasing rate of risk reduction, there is a diminish-

ing return on each additional control implemented thereafter, which means that after a certain

threshold it is costly for the organisation to mitigate additional risk.

iii. The VaR corresponding to the solutions obtained via the Knapsack formulation is in most cases

lower compared to the VaR corresponding to the solutions obtained via the set covering formu-

lation. This would further emphasise how the former approach is more suitable for providing

solutions for controlling risk.

Testing the aforementioned hypothesis, is the objective of the next steps within the context of SPIDER.

This requires i. input regarding a comprehensive list of available controls as well as the efficacy and

cost of each control; and ii. the integration of the optimisation models proposed in D5.4 within the CIC.
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11 APPENDIX

Based on the scenarios described in WP2, a general asset graph is illustrated in Figure 11. This may be

used to revise the network topology proposed in this report.
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Figure 6: Indicative list of assets.
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Figure 7: Indicative list of vulnerabilities.
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